# UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL

# **DEPARTAMENTO DE TECNOLOGIA**

Curso de Engenharia Civil

Valquíria Medianeira Costa Monteiro

# OBTENÇÃO DE COEFICIENTES DE ATRITO SOLO/ESTRUTURA PARA UM SOLO RESIDUAL DE BASALTO E SUA IMPORTÂNCIA NO CÁLCULO DE ESTRUTURAS DE CONTENÇÃO

Ijuí/RS 2006

## Valquíria Medianeira Costa Monteiro

# OBTENÇÃO DE COEFICIENTES DE ATRITO SOLO/ESTRUTURA PARA UM SOLO RESIDUAL DE BASALTO E SUA IMPORTÂNCIA NO CÁLCULO DE ESTRUTURAS DE CONTENÇÃO

Trabalho de Conclusão de Curso de Engenharia Civil apresentado como requisito parcial para obtenção do Grau de Engenheiro Civil.

Ijuí 2006

# FOLHA DE APROVAÇÃO

Trabalho de Conclusão de Curso defendido e aprovado em sua forma final pelo professor orientador e pelos membros da banca examinadora.

Prof. Luciano Pivoto Specht, Dr.-Orientador

Banca Examinadora

Prof. Luis Eduardo Modler, M. Eng. Unijuí/DeTec

Prof. Lidiane Bittencourt Barroso, M.Eng. Unijuí/DeTec

Dedico está conquista a Deus pelo dom da vida, aos meus pais, minha irmã, meu irmão e meu esposo que sempre estiveram ao meu lado me apoiando no que fosse necessário

#### AGRADECIMENTOS

Agradeço primeiramente a Deus, pelo dom da vida e proteção.

Aos meus pais Jonatan e Maria, pelo grande incentivo e auxilio em todos os momentos de minha vida, pela confiança depositado em mim ao longo desta jornada, pelo amor e carinho expresso sempre de várias maneiras.

Aos meus irmãos Valéria e César, por estarem sempre ao meu lado me apoiando e ajudando, e pelo carinho e amizade.

Ao meu amado esposo Jair, pelo companheirismo de todas as horas, pela compreensão, paciência e tantas palavras de motivação e amor sempre expresso de várias maneiras.

Agradeço ao professor Luciano pela orientação deste trabalho, pelos ensinamentos, pelo incentivo e motivação.

À Salete e Luis pela dedicação e disponibilidade. Aos colegas Francielle Diemer e Gerson Zanini pelo auxilio na execução dos ensaios que deram base a este trabalho.

Agradeço aos demais professores e pessoas que de alguma forma contribuíram para a conclusão deste curso.

#### **RESUMO**

A ocupação dos centros urbanos faz com que ocorra uma super valorização dos terrenos, e devido a isso que as obras de contenção estão cada vez mais presentes nas obras de Engenharia Civil. Para se obter uma boa obra de contenção, que satisfaça os requisitos de segurança e economia, é necessário o conhecimento dos parâmetros de entrada para os cálculos de dimensionamentos das estruturas. Este trabalho tem como objetivo principal a obtenção dos parâmetros de resistência ao cisalhamento do solo residual de basalto da cidade de Ijuí (RS), visando o seu emprego em estruturas de contenção. Os parâmetros de resistência estudados são o ângulo de atrito e coesão para a interface solo/estrutura para as três energias de compactação (normal, intermediária e modificada), determinada a partir de ensaios de cisalhamento direto inundado. Os resultados obtidos de atrito solo muro foram de 18,10°, 11,23° e 12,41° para as energias normal, intermediária e modificada, respectivamente e a coesão de 13,63kPa, 19,65kPa e 11,05kPa. Análises paramétricas com dimensionamento de um muro de contenção para as teorias de Rankine e de Coulomb foram elaboradas a fim de estudar a influência do ângulo de atrito solo/estrutura ( $\delta$ ) no dimensionamento do mesmo. A análise paramétrica com o dimensionamento do muro de contenção desenvolvido neste trabalho, mostraram que para o dimensionamento utilizando o coeficiente de atrito solo/estrutura ( $\delta$ ) os valores de empuxo encontrados apresentam um menor valor se comparado com os valores de empuxo calculados pela teoria de Rankine, e quanto maior for o ângulo de atrito interno do solo menor será a diferença. Um muro em T invertido (em Concreto Armado) calculado pela teoria de Rankine deve ter uma base maior que o muro calculado pela teoria de Coulomb (7,69%), todavia a redução no volume de concreto no muro dimensionado segundo Coulomb foi 2,44% em relação a Rankine para atender os mesmos requisitos de segurança.

Palavras chaves: mecânica dos solos, resistência ao cisalhamento, estruturas de contenção

## LISTA DE FIGURAS

| Figura 1: (a) Caixa de cisalhamento direto; (b) Representação dos resultados     | 21         |
|----------------------------------------------------------------------------------|------------|
| Figura 2: Variações dos índices de vazios para areias densas:                    |            |
| (a) para areia densa                                                             |            |
| (b) para areias fofas                                                            | 23         |
| Figura 3: Envoltória de ruptura das argilas saturadas                            | 24         |
| Figura 4: (a) Empuxo ativo; (b) Empuxo passivo                                   | 25         |
| Figura 5: Aplicação do método de Rankine para cálculo do empuxo ativo sobre estr | ruturas de |
| contenção                                                                        |            |
| Figura 6: Empuxo passivo em areia segundo Rankine                                | 31         |
| Figura 7: Comportamento da pressão vertical e horizontal                         | 31         |
| Figura 8: (a) Método de Coulomb para o caso de empuxo passivo, (b) Convenção d   | le sinais  |
| para δ                                                                           | 34         |
| Figura 9: Exemplos de estruturas de contenção                                    |            |
| (a) Muro de gravidade                                                            |            |
| (b) Muro de contenção em Gabião                                                  |            |
| (c) Muro contraforte                                                             |            |
| Figura 10: Muro de concreto em "T" invertido                                     |            |
| Figura 11: Cortina de estaca prancha sem ancoragem                               | 43         |
| Figura 12: Coluna de solo-cimento                                                | 44         |
| Figura 13: Cortina atirantada                                                    | 45         |
| Figura 14: Reforços com geotêxteis                                               | 45         |
| Figura 15: Solo grampeado                                                        | 46         |
| Figura 16: Parede–diafragma                                                      | 47         |
| Figura 17: Grama armada                                                          | 47         |
| Figura 18: Distribuição granulométrica do solo situado no campus da Unijuí       | 50         |
| Figura 19: Modelo de corpo-de-prova utilizado                                    | 50         |
| Figura 20: Ensaio de cisalhamento direto                                         |            |
| (a) caixa de cisalhamento direto                                                 |            |
| (b) resultado típico de ensaio.                                                  | 51         |
| Figura 21: Equipamento de cisalhamento direto                                    |            |

| Figura 22: Acessório do equipamento de cisalhamento direto                  | 53 |
|-----------------------------------------------------------------------------|----|
| Figura 23: Resultado do ensaio de cisalhamento direto-energia normal        | 55 |
| Figura 24: Resultado do ensaio de cisalhamento direto-energia normal        | 55 |
| Figura 25: Resultado do ensaio de cisalhamento direto-energia intermediária | 56 |
| Figura 26: Resultado do ensaio de cisalhamento direto-energia intermediária | 57 |
| Figura 27: Resultado do ensaio de cisalhamento direto-energia modificada    | 58 |
| Figura 28: Resultado do ensaio de cisalhamento direto-energia modificada    | 59 |
| Figura 29: Envoltórias para diferentes deslocamentos:                       |    |
| (a): Caso grão/superfície                                                   |    |
| (b): Caso grão/grão                                                         | 60 |
| Figura 30: Ângulo de atrito e coesão para GS e GG                           | 61 |
| Figura 31: Envoltórias para diferentes deslocamentos                        |    |
| (a): Caso grão/superfície                                                   |    |
| (b): Caso grão/grão                                                         | 63 |
| Figura 32: Ângulo de atrito e coesão para GS e GG–energia intermediária     | 65 |
| Figura 33: Envoltórias para diferentes deslocamentos                        |    |
| (a): Caso grão/superfície                                                   |    |
| (b): Caso grão/grão                                                         | 66 |
| Figura 34: Ângulo de atrito e coesão para GS e GG–energia modificada        | 68 |
| Figura 35: Envoltória de pico para os casos GS e GG                         | 69 |
| Figura 36: Envoltória de pico para os casos GS e GG                         | 70 |
| Figura 37: Envoltória de pico para os casos GS e GG                         | 71 |
| Figura 38: Parâmetro de resistência versus energia                          | 72 |
| Figura 39: Modelo estrutural para cálculo de E                              | 74 |
| Figura 40: Valor normalizado da variável                                    | 76 |
| Figura 41: Empuxo segundo a teoria de Coulomb                               | 79 |
| Figura 42: Empuxo segundo as duas teorias                                   |    |
| Figura 43: Diferença entre as teorias                                       | 81 |
| Figura 44: Muro utilizado para o dimensionamento                            |    |

### LISTA DE TABELAS

| Tabela 1: Plano de coleta de dados48                                                         |
|----------------------------------------------------------------------------------------------|
| Tabela 2: Resultado do ensaio de cisalhamento direto para os casos GG e GS61                 |
| Tabela 3: Resultado do ensaio de cisalhamento direto para os casos GG e GS       64          |
| Tabela 4: Resultado do ensaio de cisalhamento direto para os casos GG e GS                   |
| Tabela 5: Resistências de pico para os casos GS e GG para as três energias de compactação 71 |
| Tabela 6: Parâmetros de entrada para cálculo de empuxo73                                     |
| Tabela 7: Valores de empuxo para φ=20° (Ka=0,490)75                                          |
| Tabela 8: Valores de empuxo para $\phi=26^{\circ}$ (Ka=0,390)75                              |
| Tabela 9: Valores de empuxo para $\phi=32^{\circ}$ (Ka=0,307)75                              |
| Tabela 10: Valores de empuxo para $\phi=40^{\circ}$ (Ka=0,217)75                             |
| Tabela 11: Valores de empuxo para $\phi$ =46° (Ka=0,163)76                                   |
| Tabela 12: Valores de empuxo para $\delta$ =16°, $\phi$ =20° (Ka=0,433)                      |
| Tabela 13: Valores de empuxo para δ=20,8°, φ=26° (Ka=0,344)78                                |
| Tabela 14: Valores de empuxo para δ=25,6°, φ=32° (Ka=0,275)78                                |
| Tabela 15: Valores de empuxo para δ=32°, φ=40° (Ka=0,202)78                                  |
| Tabela 16: Valores de empuxo para δ=36,8°, φ=46° (Ka=0,159)                                  |

## LISTA DE SIGLAS, SÍMBOLOS E ABREVIATURAS

- θ-Ângulo de inclinação interno do muro com a vertical
- h–Altura
- ∮–Ângulo de Atrito

q-Carga

- $\delta$ -Coeficiente de Atrito solo / interface
- Ka-Coeficiente de Empuxo Ativo
- K<sub>p</sub>-Coeficiente de Empuxo Passivo
- K<sub>0</sub>-Coeficiente de Empuxo no Repouso

c'–Coesão

- cm-Centímetros
- cm<sup>3</sup>–Centímetros cúbicos
- $\Delta$ -Deslocamento
- E<sub>a</sub>-Empuxo Ativo
- E<sub>p</sub>–Empuxo Passivo
- E<sub>r</sub>-Empuxo em Repouso

F<sub>Tom</sub>=Fator de segurança de um muro quanto ao tombamento

F<sub>Desl</sub>=Fator de segurança de um muro quanto ao deslizamento

β-Inclinação

Ia-Índice de Atividade

IP-Índice de Plasticidade

- kN/m<sup>3</sup>–Quilo-Newton por metro quadrado
- kPa-Quilo-Pascal
- LEC-Laboratório de Engenharia Civil

LL–Limite de Liquidez

LP-Limite de Plasticidade

O.C.R.-Over consolidation ratio (Razão de sobre adensamento)

G-Peso específico dos grãos

Z-Profundidade

 $\gamma_n$ –Peso específico natural

 $\gamma_{concreto}$ –Peso específico do concreto

Sµ-Resistência não drenada

 $\tau$ –Tensão Cisalhante

 $\sigma$ –Tensão Normal

 $\sigma_a$ -Tensão de pré-adensamento

 $\tau_a$ –Tensão cisalhante ativa

 $\tau_p$ –Tensão cisalhante passiva

 $\tau_v$ –Tensão cisalhante vertical

TRI-Teorema da Região Inferior

TRS-Teorema da Região Superior

Unijuí-Universidade Regional do Noroeste do Estado do Rio Grande do Sul

# SUMÁRIO

| 1 | I   | NTRODUÇÃO                                                      | .15  |
|---|-----|----------------------------------------------------------------|------|
|   | 1.1 | Tema da pesquisa                                               | .15  |
|   | 1.2 | Delimitação do tema                                            | .15  |
|   | 1.3 | Formulação da questão de estudo                                | .15  |
|   | 1.4 | Definição dos objetivos de estudo                              | .15  |
|   | 1.  | .4.1 Objetivo geral                                            | .15  |
|   | 1.  | .4.2 Objetivos específicos                                     | .16  |
|   | 1.5 | Justificativa                                                  | .16  |
|   | 1.6 | Sistematização do estudo                                       | .17  |
| 2 | R   | REVISÃO BIBLIOGRÁFICA                                          | .18  |
|   | 2.1 | Resistência dos solos                                          | .18  |
|   | 2.  | .1.1 Definição                                                 | .18  |
|   | 2.  | .1.2 Atrito                                                    | .18  |
|   | 2.  | .1.3 Coesão                                                    | . 19 |
|   | 2.  | .1.4 Ensaio de cisalhamento direto                             | .20  |
|   | 2.  | .1.5 Resistência ao cisalhamento das areias                    | .22  |
|   | 2.  | .1.6 Resistência ao cisalhamento das argilas                   | .23  |
|   | 2.2 | Empuxo de terra                                                | .24  |
|   | 2.  | .2.1 Coeficiente de Empuxo                                     | .25  |
|   | 2.  | .2.2 Teoria de Rankine                                         | .26  |
|   |     | 2.2.2.1 Empuxo Ativo                                           | .27  |
|   |     | 2.2.2.2 Empuxo Passivo                                         | .30  |
|   |     | 2.2.2.3 Empuxo com sobre carga uniforme                        | .32  |
|   | 2.  | .2.3 Teoria de Coulomb                                         | .32  |
|   |     | 2.2.3.1 Empuxo Ativo                                           | .33  |
|   |     | 2.2.3.2 Empuxo Passivo                                         | .35  |
|   | 2.  | .2.4 Método de Caquot e Kerisel                                | .35  |
|   | 2.  | .2.5 Aspectos gerais que influenciam na determinação do empuxo | .36  |
|   | 2.3 | Estruturas de contenção                                        | .38  |
|   | 2.  | .3.1 Estruturas de arrimo                                      | .38  |

|   |     | 2.3.1.1 Tipos de estruturas de arrimo                             | . 38 |
|---|-----|-------------------------------------------------------------------|------|
|   |     | 2.3.1.2 Estabilidade de muros de arrimo                           | .40  |
|   | 2.  | .3.2 Cortinas de estacas pranchas                                 | .41  |
|   |     | 2.3.2.1 Estacas pranchas                                          | .41  |
|   |     | 2.3.2.2 Cortinas de estacas-pranchas                              | .41  |
|   |     | 2.3.2.3 Estabilidade de cortinas estacas pranchas                 | .43  |
|   | 2.  | .3.3 Outros métodos de contenção                                  | .44  |
| 3 | N   | /IETODOLOGIA                                                      | .48  |
|   | 3.1 | Classificação do Estudo                                           | .48  |
|   | 3.2 | Plano de coleta de dados                                          | .48  |
|   | 3.3 | Materiais utilizados na pesquisa                                  | .49  |
|   | 3.4 | Procedimento do ensaio e descrição de equipamentos                | .51  |
|   | 3.5 | Plano de análise e interpretação dos dados                        | .53  |
| 4 | A   | APRESENTAÇÃO E ANÁLISE DOS RESULTADOS                             | .54  |
|   | 4.1 | Comportamento mecânico                                            | . 54 |
|   | 4.  | .1.1 Energia Normal                                               | . 54 |
|   | 4.  | .1.2 Energia intermediária                                        | .56  |
|   | 4   | .1.3 Energia modificada                                           | .57  |
|   | 4.2 | Envoltórias de resistência para diferentes deslocamentos          | . 59 |
|   | 4.  | .2.1 Atrito e coesão para energia normal                          | . 59 |
|   | 4   | .2.2 Atrito e coesão para energia intermediária                   | . 62 |
|   | 4.  | .2.3 Atrito e coesão para energia modificada                      | .65  |
|   | 4.3 | Envoltória de resistência para pico                               | .68  |
|   | 4.  | .3.1 Atrito e coesão para energia normal                          | .68  |
|   | 4.  | .3.2 Atrito e coesão para energia intermediária                   | . 69 |
|   | 4.  | .3.3 Atrito e coesão para energia modificada                      | .70  |
|   | 4.  | .3.4 Analise dos resultados para as três energias de compactação  | .71  |
| 5 | A   | ANÁLISE PARAMÉTRICA E PRÉ-DIMENSIONAMENTO                         | .73  |
|   | 5.1 | Variáveis utilizadas para o dimensionamento                       | .73  |
|   | 5.2 | Dimensionamento segundo a Teoria de Rankine                       | .74  |
|   | 5.3 | Dimensionamento segundo a Teoria de Coulomb                       | .77  |
|   | 5.4 | Comparação dos resultados de empuxo segundo as Teorias de Coulomb | ) e  |
|   | Rar | ıkine                                                             | .80  |

|   | 5.5  | Dimensionamento de uma estrutura de contenção segundo as Teorias | de |
|---|------|------------------------------------------------------------------|----|
|   | Cou  | llomb e Rankine                                                  | 82 |
| 6 | 6    | CONSIDERAÇÕES FINAIS                                             | 87 |
|   | 6.1  | Conclusão                                                        | 87 |
|   | 6.2  | Sugestões para trabalhos futuros                                 | 89 |
| R | REFE | RÊNCIAS                                                          | 90 |
| A | NEX  | KO I-Ábacos para a metodologia de Caquot–Kerisel (1948)          | 93 |
| A | NEX  | KOS II-Planilhas do ensaio de Cisalhamento Direto                | 97 |

### 1 INTRODUÇÃO

#### 1.1 Tema da pesquisa

O tema da pesquisa é:

Mecânica dos solos aplicada ao dimensionamento de estruturas de contenção.

#### 1.2 Delimitação do tema

Este trabalho consiste em uma pesquisa relacionada ao dimensionamento de estruturas de contenção, segundo as teorias de Coulomb e Rankine. Através da realização de ensaios de cisalhamento, pretende-se obter os parâmetros de resistência ao cisalhamento do solo/estrutura do solo residual de basalto, na região de Ijuí-RS.

#### 1.3 Formulação da questão de estudo

Qual a importância de se utilizar o coeficiente de atrito solo/estrutura na determinação de empuxo para o caso do solo residual da região de Ijuí, segundo as metodologias de Coulomb e Rankine?

#### 1.4 Definição dos objetivos de estudo

#### 1.4.1 Objetivo geral

Este estudo tem como objetivo geral estudar a importância do atrito solo/estrutura no cálculo de empuxo para o caso de solo residual de basalto encontrado na cidade de Ijuí, visando o seu emprego em obras de engenharia civil.

#### 1.4.2 Objetivos específicos

- ✓ Determinar os parâmetros de resistência ao cisalhamento (ângulo de atrito e coesão), para a interface solo/estrutura na energia normal de compactação;
- ✓ Determinar os parâmetros de resistência ao cisalhamento direto (ângulo de atrito e coesão), para a interface solo/estrutura na energia intermediária de compactação;
- ✓ Determinar os parâmetros de resistência ao cisalhamento direto (ângulo de atrito e coesão), para a interface solo/estrutura na energia modificada de compactação;
- Analisar numericamente, através da aplicação das teorias de Coulomb e Rankine, os parâmetros envolvidos no cálculo de empuxo em estruturas de contenção.

#### 1.5 Justificativa

Na Construção Civil o solo é considerado o material mais barato e abundante encontrado na natureza, servindo de base para todas as obras de Engenharia Civil, sendo importante o conhecimento de suas propriedades para que se possa aliar segurança à economia. Portanto é necessário o conhecimento das propriedades físicas e mecânicas dos solos envolvidos na obras.

A ocupação dos centros urbanos implica em uma super valorização dos terrenos, refletindo no altíssimo valor do metro quadrado, que por sua vez influência na maneira como vai se construir. Devido a isto, é que as obras de contenção do terreno estão cada vez mais presentes nos projetos de Engenharia Civil, onde são utilizados para obter um melhor aproveitamento do espaço.

Para obter uma boa obra de contenção, que satisfaça os requisitos de segurança e economia, é imprescindível o conhecimento dos parâmetros de entrada para o cálculo de

empuxo segundo as teorias de Coulomb e Rankine. Tais parâmetros são: geometria do problema, nível de água, condições de contorno e as propriedades do solo. Desta forma fica clara a importância do estudo dos parâmetros de resistência ao cisalhamento do solo para obras Geotécnicas, mais especificamente na utilização de estruturas de contenção, proporcionando maior segurança, economia e confiabilidade a obra.

Esta pesquisa é uma continuação das pesquisas da área de Geotecnia do curso de Engenharia Civil da Unijuí, sendo que suscede os trabalhos de Viecili (2003), Bonafé (2004), Wallau (2004) e Bernardi (2006).

#### 1.6 Sistematização do estudo

O trabalho está organizado da seguinte forma:

Neste primeiro capítulo, apresenta-se o tema da pesquisa juntamente com sua delimitação, seguida da questão que fundamenta o estudo, dos objetivos geral e específico, justificativa e proposta de sistematização.

No segundo capítulo, são comentados temas que envolvem o estudo, como: resistência dos solos, empuxo de terra segundo as metodologias de Coulomb e Rankine, além de estruturas de contenção.

No terceiro capítulo, apresenta-se a metodologia utilizada, o método escolhido para o estudo, a forma de coleta de dados, os materiais utilizados na pesquisa e os procedimentos e descrição de equipamentos.

No quarto capítulo, são apresentados e analisados os resultados obtidos nos ensaios.

O quinto capítulo, apresenta a análise numérica para verificar que parâmetros são mais influentes no cálculo do Empuxo.

O sexto capítulo, mostra as conclusões juntamente com sugestões para trabalhos futuros.

### 2 REVISÃO BIBLIOGRÁFICA

Neste capítulo serão apresentados assuntos que darão embasamento à pesquisa, tais como: a resistência dos solos, empuxo de terra e estruturas de contenção.

#### 2.1 Resistência dos solos

A resistência dos solos pode ser definida como sendo o resultado da ação conjunta de dois fatores denominados de ângulo de atrito e coesão. O ângulo de atrito do solo está associado ao efeito de entrosamento entre as partículas. No caso de presença de lençol freático o desenvolvimento de pressões neutras, merece uma atenção especial no estudo dos solos (MACHADO e MACHADO, 1997).

#### 2.1.1 Definição

A resistência ao cisalhamento do solo pode ser definida como sendo a máxima tensão de cisalhamento que ele pode suportar sem sofrer ruptura, ou ainda, como sendo a tensão de cisalhamento do solo no plano em que a ruptura estiver ocorrendo. O cisalhamento ocorre devido ao deslizamento entre as partículas do solo (PINTO, 2002).

#### 2.1.2 Atrito

Pinto (2002), diz que a resistência por atrito entre as partículas pode ser definida como a força tangencial necessária para ocorrer o deslizamento de um plano sobre outro paralelo a este. O ângulo formado entre a força normal e a resultante das forças, tangencial e normal, é chamado de *ângulo de atrito* " $\phi$ ", que pode ser definido como o ângulo máximo que a força cisalhante pode ter com a normal ao plano de contato sem que ocorra o deslizamento.

Segundo Caputo (1988a), a denominação genérica de atrito interno de um solo, incluise não só o atrito físico entre suas partículas, como o atrito fictício proveniente do entrosamento de suas partículas, no solo não existe uma superfície nítida de contato, ao contrário, há uma infinidade de contatos pontuais.

As forças transmitidas nos contatos entre grãos de areia e grãos de argila são diferentes porque as forças transmitidas na areia são suficientemente grandes para expulsar a água existente entre as partículas, gerando um contato entre os dois minerais. Já nas argilas o número de partículas de solo é muito maior, ocasionando uma menor força entre os contatos, esta força não é suficiente para expulsar a água absorvida pelas partículas, ou seja, a água se torna a responsável pela transmissão das forças (PINTO, 2002).

Machado e Machado (1997), diz que a lei de atrito de Coulomb resultou de observações empíricas, e posteriormente Terzaghi elaborou uma teoria que fornece embasamento teórico para as constatações empíricas das leis de atrito. Segundo eles, a superfície de contato real entre dois corpos constitui apenas uma parcela da superfície aparente de contato, dado que em nível microscópico, as superfícies dos materiais são efetivamente rugosas. Então, o contato entre partículas ocorre através das protuberâncias mais salientes. Portanto, as tensões transmitidas nos contatos entre as partículas de solo são de valor muito elevado, sendo razoável admitir que haja plastificação do material na área dos contatos entre as partículas.

#### 2.1.3 Coesão

A resistência ao cisalhamento dos solos ocorre devido ao atrito entre as partículas. A atração química entre elas, pode provocar uma resistência independente da tensão normal atuante no plano e que constitui uma coesão real, que deve ser bem diferente da coesão aparente (PINTO, 2002).

Assim temos que coesão aparente é a resultante da pressão capilar da água contida nos solos, e que age como se fosse uma pressão externa, e coesão real é devida às forças eletroquímicas de atração das partículas.

Segundo Machado e Machado (1997), a coesão consiste na parcela de resistência de um solo que existe independentemente de quaisquer tensões aplicadas e que se mantém, ainda

que não necessariamente em longo prazo, se todas as tensões aplicadas ao solo forem removidas. Várias fontes podem originar coesão em um solo. A cimentação entre as partículas proporcionadas por carbonatação, sílica, óxidos de ferro, dentre outras substâncias, responde muitas vezes por altos valores de coesão.

Machado e Machado (1997) diz que a coesão aparente é uma parcela da resistência ao cisalhamento de solos úmidos, não saturados, que não tem sua origem na cimentação e nem nas forças intrínsecas de atração. Esse tipo de coesão deve-se ao efeito de capilaridade na água intersticial. Sendo que a pressão neutra negativa atrai as partículas gerando novamente um fenômeno de atrito entre as mesmas. Saturando-se totalmente o solo, ou secando-o por inteiro, esta parcela desaparece. A sua intensidade cresce com a diminuição do tamanho das partículas e pode ser uma parcela bastante considerável da resistência ao cisalhamento do solo, principalmente para solos argilosos.

#### 2.1.4 Ensaio de cisalhamento direto

Segundo Hachich et al (2000), o ensaio de cisalhamento direto é o mais antigo procedimento para determinar a resistência ao cisalhamento de um solo e baseia-se no critério de Coulomb.

A determinação da resistência ao cisalhamento do solo pode ser feita através de ensaios de laboratório ou ensaios de campo. Dentre os ensaios de laboratórios mais usuais estão: o ensaio de cisalhamento direto e os ensaios triaxiais. Já os ensaios de campo mais utilizados são: ensaio de Palheta "*Vane–Test*", sondagens à percussão e cisalhamento direto "*In situ*" (MACHADO e MACHADO, 1997).

Segundo Caputo (1988a), o ensaio de cisalhamento direto consiste em determinar sob uma tensão normal  $\sigma$ , qual a tensão de cisalhamento  $\tau$  capaz de provocar a ruptura de uma amostra de solo colocada dentro de uma caixa composta de duas partes deslocáveis entre si, conforme ilustra a Figura 1(a), no qual resulta em um gráfico demonstrado pela Figura 1(b), onde é possível calcular c' e  $\phi$ .



Figura 1: (a) Caixa de cisalhamento direto; (b) Representação dos resultados. Fonte: CAPUTO, (1988a)

Para a realização do ensaio de cisalhamento direto, o solo é colocado em uma caixa de cisalhamento constituída de duas partes, onde a parte inferior é fixa enquanto a superior pode se movimentar, inicialmente é aplicada uma força vertical "N" e uma força horizontal "T", que é aplicada na parte inferior da caixa, provocando seu deslocamento. Na parte superior da caixa vai existir uma célula de carga que é instalada para agir no sentido de impedir o movimento da caixa, medindo assim a força que o solo suporta.

Segundo Machado e Machado (1997), algumas deficiências limitam a aplicabilidade do ensaio de cisalhamento direto, a primeira delas é o fenômeno da *ruptura progressiva*, que se manifesta principalmente nos solos que apresentam uma ruptura do tipo frágil. A ruptura progressiva pode ocorrer porque a deformação cisalhante ao longo do plano de ruptura não é uniforme, e ao iniciar o cisalhamento ocorre uma concentração de deformação próximo às bordas da caixa de cisalhamento, que tendem a decrescer em direção ao centro da amostra.

As tensões em cada local serão diferentes, de forma que quando nas regiões próximas à borda da caixa de cisalhamento forem atingidas a deformação e a tensão de ruptura, teremos assim próximo ao centro da amostra tensões inferiores à de ruptura. À medida que aumentam as deformações, a ruptura caminha em direção ao centro e uma vez que as extremidades já passaram pela ruptura, teremos tensões menores que a de ruptura, nessas extremidades. Dessa forma, o valor de resistência que se mede no ensaio é mais conservadora do que a máxima resistência que se poderia obter para o solo, porque a deformação medida durante o ensaio não consegue representar o que realmente ocorre, mas somente uma média das deformações que se processam na superfície de ruptura. Para solos de ruptura plástica, tal situação não ocorre, porque em todos os pontos da superfície de ruptura atuam esforços iguais, independentemente de qualquer concentração de tensões. Salientando, que o plano de ruptura não pode ser na realidade o mais fraco. E com isso, os esforços que atuam em outros planos que não o de ruptura, não podem ser estimados durante a realização do ensaio de cisalhamento direto, senão quando no instante de ruptura. Além, de que a área do corpo-de-prova de prova diminui durante o ensaio (MACHADO e MACHADO, 1997).

Segundo Pinto (2002), o controle das condições de drenagem é difícil, pois não há como impedi-la. Ensaios realizados com areias são feitos sempre de forma que as pressões neutras se dissipem, e os resultados são considerados em termos de tensões efetivas. Já nas argilas, pode-se realizar ensaios drenados (mais lentos), ou não drenados, sendo que o carregamento para este caso deve ser mais rápido, para impossibilitar a saída de água.

#### 2.1.5 Resistência ao cisalhamento das areias

Segundo Caputo (1988a), ao submeter uma amostra de areia ao ensaio de cisalhamento direto, verifica-se que dependendo do seu grau de compacidade, ela aumenta ou diminui de volume, antes de atingir a ruptura. Sendo que as areias densas aumentam e as fofas diminuem, conforme o indicado na Figura 2, surgindo assim, o *índice de vazios crítico* que é definido como sendo o limite entre os dois estados de compacidade, para qual não se dará nem expansão e nem contração do material, sendo seu conhecimento importantíssimo para o estudo de alguns problemas de estabilidade de maciços arenosos.



Figura 2: Variações dos índices de vazios para areias densas: (a) para areia densa (b) para areias fofas Fonte: CAPUTO, (1988a)

Tem-se ainda o fenômeno de *liquefação das areias*, que ocorre durante o ensaio de cisalhamento das areias fofas saturadas, conceituado como sendo o escoamento fluido dessas areias, provocado pelo acréscimo de pressão neutra e conseqüente decréscimo da resistência ao cisalhamento. No caso de areia seca, o ângulo de atrito interno ( $\phi$ ) é igual ao ângulo de repouso ( $\alpha$ ), definido como ângulo entre a horizontal e o talude, produzido mediante derramamento de areia de uma pequena altura (CAPUTO, 1988a).

#### 2.1.6 Resistência ao cisalhamento das argilas

A resistência ao cisalhamento das argilas pode ser dividida em:

<u>Argilas saturadas</u> – na Figura 3, pode-se perceber que as linhas envoltórias de ruptura de argilas saturadas, obtidas de ensaios lentos, rápido e rápido pré-adensado, indicam que os

resultados para os ensaios lento e rápido pré-adensado são semelhantes apresentando trechos retilíneos passando pela origem, para pressões maiores que a de pré-adensamento ( $\sigma_a$ ), assim, para pressões maiores que  $\sigma_a$ , nessas condições de solicitação, as argilas funcionam, como solos coesivos. Para ensaio rápido, não sendo permitido a drenagem, o índice de vazios da amostra será sempre o mesmo, ou seja, não se exercerão pressões efetivas, concluindo que a resistência ao cisalhamento será sempre a mesma, independentemente do par de valores ( $\sigma_3$ ,  $\sigma_1$ ). Portanto a envoltória será uma reta horizontal,  $\sigma=c$  (CAPUTO, 1988a).



Figura 3: Envoltória de ruptura das argilas saturadas Fonte: CAPUTO, (1988a)

<u>Argilas não saturadas</u> – como são solos compactados para construção de terrapleno, as envoltórias resultantes dos diversos tipos de ensaios têm formas diferentes das obtidas para as argilas saturadas, considerando as pressões neutras desenvolvidas em função da redução de volume da face gasosa.

#### 2.2 Empuxo de terra

Entende-se por empuxo de terra as solicitações que o solo exerce sobre uma estrutura, e são dependentes da interação solo/estrutura. A determinação de seu valor é fundamental para a análise e projeto de obras como muros de arrimo, cortinas de estacas-pranchas, construções de subsolos, encontros de pontes, entre outras, nestes casos, os taludes necessários são geralmente altos ou inclinados, não mantendo a estabilidade por muito tempo. Para promover suporte a estes solos não estáveis é que são projetadas as estruturas de contenção.

Machado e Machado (1997), diz que as obras de contenção exigem em seus dimensionamentos e análises de estabilidade, o conhecimento dos valores dos empuxos. Tais estruturas freqüentemente requerem verificações adicionais no seu dimensionamento, não só a análise da sua estabilidade global, como a segurança de seus elementos de construção.

#### 2.2.1 Coeficiente de Empuxo

Segundo Machado e Machado (1997), os empuxos laterais de solo sobre uma estrutura de contenção são normalmente calculados por intermédio de um coeficiente, que é multiplicado pelo valor da tensão vertical efetiva naquele ponto. O valor deste coeficiente irá depender do processo de interação solo/estrutura. Estes coeficientes são denominados de *coeficiente de empuxo* do solo, que dependem da direção do movimento lateral imposto pela estrutura de contenção.

O empuxo de terra que atua sobre um suporte que resiste, mas cede uma certa quantidade e que depende de suas características estruturais, denomina-se *empuxo de terra Ativo (Ea)*, ou seja, o solo esta empurrando a estrutura, como mostra a Figura 4 (a). Quando a parede é que avança contra o solo temos então o *empuxo Passivo (Ep)*, ou seja, a estrutura empurra o solo, como podemos notar na Figura 4(b). As pressões correspondentes chamam-se ativa e passiva e os coeficientes de empuxo, ativo (Ka) e passivo (Kp) (CAPUTO, 1988b).



Figura 4: (a) Empuxo ativo; (b) Empuxo passivo. Fonte: MOLITERNO, (1994)

Quando uma estrutura é suficientemente rija, não permitindo qualquer tipo de deslocamento, pode-se dizer que as tensões que existentes são denominadas de pressão no repouso (empuxo em repouso (Er)) e utiliza um coeficiente de empuxo no repouso ( $K_0$ ).

Segundo Machado e Machado (1997), solos pré-adensados tendem a exibir maiores valores de  $K_0$ , os quais se apresentam crescentes com a razão de pré-adensamento. Para altos valores de O.C.R.(Over consolidation ratio ou Razão de sobre adensamento), pode se encontrar valores de  $K_0$  superiores à umidade. Tem-se demonstrado que os solos não saturados tendem a exibir valores de  $K_0$  decrescentes com o seu valor de sucção.

Caputo (1988b), diz que a mobilização progressiva da resistência ao cisalhamento ao longo da curva de ruptura é que permite a redução (para empuxo ativo) e o crescimento (para empuxo passivo) do valor total do empuxo. A partir de um valor  $\Delta$ , a  $E_a$  não decresce mais, e nem a  $E_p$  cresce mais, pois a  $\sigma$  atingiu seu valor máximo.

#### 2.2.2 Teoria de Rankine

As principais hipóteses adotadas por Rankine para representar o empuxo foram as seguintes:

- > Plastificação total do solo;
- ➡ Não leva em consideração o atrito entre solo/muro;
- Sconsidera a distribuição triangular das tensões;
- Solution Maciço homogêneo e de superfície horizontal.

A Teoria de Rankine possibilita o cálculo do empuxo ativo ou passivo em uma estrutura de contenção com paramento vertical, incluindo superfícies de solo inclinada de  $\beta$  com a horizontal (SILVA, 2002).

Segundo Machado e Machado (1997), os processos práticos utilizados para a determinação dos empuxos de terra são métodos de utilização de equilíbrio limite. Admite-se, nestes métodos, que a cunha de solo situada em contato com a estrutura de suporte esteja num

dos possíveis estados de plastificação, ativo ou passivo. Esta cunha tenta deslocar-se da parte fixa do maciço e sobre ela são aplicadas as análises de equilíbrio dos corpos rígidos. A análise de Rankine apóia-se nas equações de equilíbrio interno do maciço, cujas equações são definidas para um elemento infinitesimal do meio e estendida a toda massa plastificada através de integração. Esta análise se enquadra no teorema da região inferior (TRI) da teoria da plasticidade.

Machado e Machado (1997) diz, que as solicitações internas são as reações que se desenvolvem na cunha, como conseqüência das solicitações externas. Para resolução das equações de equilíbrio, todos os pontos dentro da cunha de ruptura são supostos em estado limite e as tensões se relacionam pelo critério de ruptura da Mohr-Coulomb.

O método de Rankine consiste na integração ao longo da altura de suporte do elemento, das tensões horizontais, calculadas a partir do sistema de equações estabelecido para o maciço (MACHADO e MACHADO, 1997).

Segundo Lambe (1974), a presença de atrito ou adesão na interface solo/muro gera tensões tangenciais que contribuem para resistir ao deslocamento da cunha plastificada a utilização da teoria de Rankine faz com que o empuxo ativo seja sobreestimado e o empuxo passivo subestimado. Segundo ele, o atrito propicia uma redução da componente horizontal do empuxo (menor quanto for o valor do coeficiente de atrito ( $\delta$ ) entre solo/muro), provocando o encurvamento das superfícies de escorregamento.

#### 2.2.2.1 Empuxo Ativo

Solos não coesivos apresentam a variação das tensões horizontais linearmente com a profundidade e o empuxo consistirá na integração das tensões laterais ao longo da altura, possuindo um diagrama resultante triangular. A Figura 5 ilustra a obtenção do empuxo ativo sobre uma estrutura de contenção pelo método de Rankine, para solos não coesivos e coesivos. Para solos coesivos, os valores de empuxo obtidos até uma profundidade  $Z=Z_0$  são negativos. A ocorrência de empuxo negativo sobre uma estrutura de contenção é pouco improvável, uma vez que a tendência do solo é se "descolar" do muro, sendo que até esta profundidade ( $Z=Z_0$ ), é provável o surgimento de trincas de tração no solo, por esta razão é

que geralmente despreza-se o empuxo negativo sobre a estrutura de contenção, e calcula-se o empuxo a partir da altura reduzida do muro, h'= $H-Z_0$ , conforme se ilustra na Figura 5. Esta apresenta também a integração dos esforços horizontais ao longo do muro de arrimo o que resulta na Equação 2.1, que representa o empuxo ativo atuando sobre a estrutura de contenção (MACHADO e MACHADO, 1997).



Figura 5: Aplicação do método de Rankine para cálculo do empuxo ativo sobre estruturas de contenção.

Fonte: MACHADO e MACHADO, (1997)

$$E_a = \frac{K_a * h^2 * \gamma}{2} \tag{2.1}$$

Onde: Ka-coeficiente de empuxo ativo

h'–altura γ-peso específico

A presença de coesão possibilita manter um corte vertical sem a necessidade de escoramento até uma determinada altura do solo, esta altura é denominada de "*altura crítica*" na qual o empuxo resultante é nulo. Através da Figura 5 podemos perceber que isto ocorre quando temos  $Z=2*Z_0$ , sendo esta a altura na qual podem ser feitas escavações sem o escoramento do solo. A Equação 2.2 apresenta a altura crítica de corte sem escoramento. E a Equação 2.3 apresenta o cálculo para empuxo passivo para solos coesivos (MACHADO e MACHADO, 1997).

$$-Zc = \frac{4*c'}{\gamma * tg\left(45 - \left(\frac{\phi'}{2}\right)\right)}$$
(2.2)

$$E_{p} = \frac{K_{p} * h^{2} * \gamma + 2 * c' * h' * \sqrt{K_{p}}}{2}$$
(2.3)

Onde: K<sub>p</sub>-coeficiente de empuxo passivo

φ-ângulo de atrito
c'-coesão
E<sub>p</sub>-empuxo passivo

Machado e Machado (1997), salienta a importância da utilização de um bom sistema de drenagem para as estruturas de contenção, de modo a evitar empuxos na estrutura provocados pela água, mesmo se estiver sendo considerado estruturas que suportem solos coesivos.

Segundo Caputo (1988b), a influência do lençol d'água sobre o cálculo das pressões pode ser levada em conta considerando-se que a pressão total (no caso de solos permeáveis) é igual à soma da pressão da água mais a do solo com um peso específico submerso, para solos pouco permeáveis aconselha-se calcular a pressão considerando o solo com um peso específico saturado.

A determinação do coeficiente de empuxo para solos granulares se dá através da seguinte expressão:

$$K_{a} = \frac{\tau_{ha}}{\tau_{v}} = \frac{1 - \sin\phi}{1 + \sin\phi} = tg^{2} \left( 45 - \frac{\phi}{2} \right)$$
(2.4)

Onde:  $\tau_a$ -tensão cisalhante ativa

 $\tau_v$ -tensão cisalhante vertical

Assim, o empuxo é calculado através da integração, ao longo da altura do suporte, das tensões horizontais atuantes, sendo a resultante aplicada no centro de gravidade da figura onde é aplicada a força, neste caso triangular, por isso no terço inferior da altura h, conforme ilustra a Figura 7(a), quando a parede de afasta do terrapleno (CORRÊA, 2003).

E possuindo uma tensão horizontal dada por:

$$\tau_{h} = K_{a} * \tau_{v} = tg^{2} \left( 45 - \frac{\phi}{2} \right) * \tau_{v}$$
(2.5)

Com isso o empuxo é calculado através da integração, ao longo da altura do suporte, das tensões horizontais atuantes.

$$E_{a} = \int_{0}^{H} \tau_{ha} da = \int_{0}^{H} K_{a} * P * Z * dz = \frac{1}{2} K_{a} * \gamma * H^{2}$$
(2.6)

Onde: Z-profundidade

#### 2.2.2.2 Empuxo Passivo

O cálculo do empuxo passivo segundo a teoria de Rankine consiste numa aplicação da teoria de equilíbrio passivo dos maciços terrosos. Tratando-se da reação que o solo oferece a uma estrutura de contenção que é empurrado ou puxado contra o maciço terroso (MAGALHÃES, 2003).

Segundo Magalhães (2003), se uma placa vertical enterrada num maciço de superfície inclinada for puxada por um cabo, fixada no ponto A, como ilustra a Figura 6, na direção paralela à superfície do terreno, será necessário aplicar uma força  $E_p$  correspondente ao empuxo passivo, para romper o solo. O empuxo passivo pode ser calculado pelo círculo de Mohr correspondente a ponto de profundidade "H", como mostra a Figura 6(b), o círculo é determinado fazendo AO =  $\gamma Z * \cos i$ , onde a pressão passiva no ponto A da placa será dada pelo vetor OB e terá direção paralela à superfície do terreno. No topo da placa o empuxo passivo será triangular e, portanto seu ponto de aplicação será no terço inferior da placa.



Figura 6: Empuxo passivo em areia segundo Rankine. Fonte: Magalhães (2003)

A determinação do coeficiente de empuxo para solos granulares se dá através da seguinte expressão:

$$K_{p} = \frac{\tau_{p}}{\tau_{v}} = \frac{1 + \operatorname{sen} \phi}{1 - \operatorname{sen} \phi} = tg^{2} \left( 45 + \frac{\phi}{2} \right)$$
(2.7)

Onde:  $\tau_p$ -tensão cisalhante passivo

 $\tau_v$ -tensão cisalhante vertical

A Figura 7(b) ilustra como é calculado o empuxo para o caso passivo, onde a força é aplicada no terço inferior da altura, quando a parede se desloca contra o terrapleno.



Figura 7: Comportamento da pressão vertical e horizontal.

Fonte: Caputo, (1988b)

E possuindo uma tensão horizontal dada por:

$$\tau_{h} = K_{p} * \tau_{v} = tg^{2} \left( 45 + \frac{\phi}{2} \right) * \tau_{v}$$
(2.8)

#### 2.2.2.3 Empuxo com sobrecarga uniforme

O método de Rankine pode ser aplicado nos casos em que existe sobrecarga sobre a superfície de terrapleno. O efeito da sobre carga "q" aplicada sobre o terreno, à pressão vertical a uma profundidade qualquer pode ser definida como:

$$\sigma_{\nu} = q + \gamma * h' \tag{2.9}$$

Onde: h'-altura

Assim, os empuxos ativos e passivos são calculados pelas respectivas expressões:

$$E_{a} = \frac{1}{2} * \gamma * h^{2} * K_{a} + q * h * K_{a}$$
(2.10)

$$E_{p} = \frac{1}{2} * \gamma * h^{2} * K_{p} + q * h * K_{p}$$
(2.11)

#### 2.2.3 Teoria de Coulomb

As hipóteses básicas adotadas por Coulomb foram:

- Solo homogêneo e isotrópico (possui as mesmas propriedades horizontal e vertical);
- Suptura em superfície de plastificação plana;
- Sconsidera o atrito entre solo/muro.

A Teoria de Coulomb baseia-se na hipótese de que o esforço exercido no paramento do muro é proveniente da pressão do peso parcial de uma cunha de terra, que desliza pela perda de resistência a cisalhamento ou atrito (MOLITERNO, 1994).

Segundo Machado e Machado (1997), o método de cálculo de empuxo de Coulomb enquadra-se na filosofia do *Teorema da Região Superior (TRS)*, da teoria da plasticidade que estabelece o equilíbrio de uma massa de solo, se, para um deslocamento arbitrário, o trabalho realizado pelas solicitações externas for menor do que as forças internas. Em caso contrário, a massa de solo estará em condição de instabilização ou de plastificação.

Magalhães (2003), diz que embora a teoria de Coulomb só se aplique aos solos não coesivos, está mais próxima das condições vigentes nos casos de empuxo de terra, pois leva em consideração o atrito entre o material que exerce o empuxo e a superfície do muro, sobre a qual se aplica o empuxo de terra. Além disso, a teoria de Coulomb leva ao cálculo do empuxo total, nada concluindo sobre o seu ponto de aplicação, tornando–se uma vantagem sobre o método de Rankine, cuja conclusão sobre a distribuição triangular das pressões, obriga a aplicação do empuxo no terço inferior do muro. Essa conclusão está em desacordo com a experiência, pois essa mostra que o ponto de aplicação do empuxo varia, conforme o deslocamento do muro, entre o terço inferior e a metade da altura do muro.

Para o cálculo do empuxo segundo Machado e Machado (1997), é efetuado estabelecendo-se as equações de equilíbrio das forças atuantes sobre uma cunha de deslizamento hipotético. Uma das forças atuantes é o empuxo, que no estado ativo corresponde à reação da estrutura de suporte sobre a cunha e, no passivo, à força que a estrutura de arrimo exerce sobre ela. O empuxo ativo será o máximo valor dos empuxos determinados sobre as cunhas analisadas, o passivo, o mínimo.

#### 2.2.3.1 Empuxo Ativo

Segundo Machado e Machado (1997), no empuxo ativo o muro se movimenta de modo que o solo é forçado a mobilizar a sua resistência ao cisalhamento, até a sua ruptura iminente. A ativação da resistência ao cisalhamento do solo pode ser entendida como sendo o fim do processo de expansão que se desencadeia no solo a partir de uma posição em repouso, ou seja, o valor do empuxo sobre a estrutura de contenção vai diminuindo, com a expansão, até atingir um valor crítico, situado no limiar da ruptura, ou da plastificação.

A Equação 2.12 apresenta o valor de empuxo ativo obtido através do método de Coulomb. Na Figura 8, estão apresentados todas as variáveis presentes na Equação 2.12, para o caso de empuxo passivo, no caso de empuxo ativo a resultante R do solo atuará desviada também de  $\phi$  da normal à cunha, mas em sentido oposto, o empuxo ativo (E<sub>a</sub>) será inclinada da normal à contenção também de  $\delta$ , mas em sentido contrário ao apresentado na Figura 8, devendo atender as conversões de sinais adotados na Figura 8(b) (MACHADO e MACHADO, 1997).

$$K_{a} = \frac{\operatorname{sen}^{2}(\alpha + \phi')}{\operatorname{sen}^{2}(\alpha) * \operatorname{sen}(\alpha - \delta) \left[1 + \sqrt{\frac{\operatorname{sen}(\phi' + \delta) * \operatorname{sen}(\phi' - \beta)}{\operatorname{sen}(\alpha - \delta) * \operatorname{sen}(\alpha + \beta)}}\right]^{2}}$$
(2.12)

Onde:

 $\alpha = 90-\theta$ 

 $\beta$ = ângulo de inclinação do terreno adjacente;

 $\theta$ =ângulo de inclinação do paramento interno do muro com a vertical;

 $\delta$ =ângulo de atrito entre solo / muro;

 $\phi$ =ângulo de atrito interno.



Figura 8: (a) Método de Coulomb para o caso de empuxo passivo, (b) Convenção de sinais

#### para δ.

Fonte: Machado e Machado, (1997)

#### 2.2.3.2 Empuxo Passivo

O método de cálculo para o empuxo dos solos não coesivos é simplesmente uma extensão da Teoria de Coulomb, procurando o valor mínimo de empuxo ( $E_p$ ) que equilibra a cunha de ruptura (MAGALHÃES, 2003).

A Equação 2.13 apresenta o valor do coeficiente de empuxo passivo obtido pelo método de Coulomb.

$$K_{p} = \frac{\operatorname{sen}^{2}(\alpha - \phi')}{\operatorname{sen}^{2}(\alpha) * \operatorname{sen}(\alpha + \delta) \left[ \sqrt{\frac{\operatorname{sen}(\phi' + \delta) * \operatorname{sen}(\phi + \beta)}{\operatorname{sen}(\alpha + \delta) * \operatorname{sen}(\alpha + \beta)}} \right]^{2}}$$
(2.13)

#### 2.2.4 Método de Caquot e Kerisel

Segundo Silva (2002), as equações utilizadas para o cálculo do empuxo ativo e do empuxo passivo pela teoria de Caquot–Kerisel (1948) baseavam-se nas seguintes hipóteses:

- A resistência ao cisalhamento do solo obedece à Lei de Coulomb;
- ✤ A coesão efetiva é nula;
- Há mobilização de atrito entre o solo e a estrutura;
- ✤ Não há adesão entre o solo e a estrutura;
- A superfície do terreno é plana, podendo ser inclinada;
- ♥ O tardoz é plano, podendo ser inclinado;
- A superfície de ruptura é curvilínea;
- ✤ Não há sobrecarga na superfície do terreno;
- ♦ Não há nível d'água nos grãos acima da fundação da estrutura.

Podendo notar que a forma da superfície de ruptura é a principal diferença em relação à teoria de Coulomb.

Silva (2002) diz, que a teoria de Caquot–Kerisel (1948) supõe que a superfície de ruptura tenha a forma de uma espiral logarítmica. Para o empuxo ativo, a curvatura desta superfície é muito suave, conseqüentemente, os valores de K<sub>a</sub>, calculados por essa teoria são muito semelhantes aos valores de K<sub>a</sub> calculados pela teoria de Coulomb (1776). No caso de empuxo passivo, a superfície de ruptura prevista é fortemente curva, ou seja, os valores de K<sub>p</sub> calculados pela teoria de Caquot–Kerisel são bem inferiores aos valores de K<sub>p</sub> calculados por Coulomb.

Este método foi utilizado por Kerisel e Absi (1990), onde os coeficientes de empuxo ativo e passivo calculados pela teoria de Caquot–Kerisel então apresentados na forma de ábacos, que estão apresentados no Anexo I. Estes, foram preparados pelo U.S. Army Corps of Engineers (1989) e Naval Facilities Engineering Command U. S. (NAVFAC) (1986).

#### 2.2.5 Aspectos gerais que influenciam na determinação do empuxo

A seguir é feito um pequeno resumo sobre alguns fatores que influenciam no valor do empuxo em uma estrutura de contenção, segundo Machado e Machado (1997):

a) <u>Influência da pressão neutra:</u> o empuxo devido à água deve ser considerado separadamente, não sendo possível incluir os esforços devido à percolação da água nas teorias de Rankine e Coulomb. Deve-se lembrar que ao assumir o nível de água estático, os coeficientes de empuxo referem-se às tensões efetivas, e que a água exerce igual pressão em todas as direções, sendo o empuxo da água perpendicular à face de contenção.

b) <u>Influência de sobrecargas aplicadas à superfície do terreno:</u> no cálculo dos acréscimos dos empuxos devidos a carregamentos em superfície, alguns resultados de instrumentação comprovam a aplicabilidade das fórmulas da Teoria de Elasticidade, sendo necessárias algumas correções empíricas para adequá-las aos valores reais medidos, sendo um dos aspectos a considerar e que requer correção refere-se à rigidez da estrutura.

c) <u>Influência do atrito entre o solo e o muro</u>: a mesma pode ser evidenciada observando-se que quando o muro move-se, o solo que ele suporta expande-se ou é comprimido. Ao expandir o solo apresenta uma tendência a descer ao longo da parede que, se
impedida, origina tensões tangenciais ascendentes que suportam em parte a massa de solo deslizante, aliviando assim, o valor do empuxo sobre o muro. No caso passivo, onde o solo é comprimido, ocorre simplesmente o contrário. O Método de Rankine desconsidera o atrito solo/muro, fornecendo soluções do lado da segurança, já o Método de Coulomb, considera o atrito solo/muro, fornecendo soluções mais realistas.

A presença do atrito na interface solo/muro, além de reduzir o valor do empuxo, provoca a sua inclinação, tornando os muros mais estáveis já que a componente horizontal do empuxo que é diminuída está diretamente relacionada com a estabilidade do muro quanto ao escorregamento e ao tombamento. O ângulo de atrito entre o solo e o muro depende do ângulo de atrito do solo, na falta de um valor específico, recomenda-se adotar para  $\delta$  um valor situado entre o intervalo apresentado na Equação 2.14.

$$\frac{\phi'}{3} * \left[ \delta \left( \frac{2}{3} * \phi' \right) \right] \tag{2.14}$$

Onde:  $\delta$ -coeficiente de atrito solo/superfície.

d) <u>Ponto de aplicação do empuxo:</u> é importante principalmente na verificação da estabilidade da estrutura de fundação quanto ao tombamento. A forma de distribuição das tensões horizontais sobre a estrutura de contenção, a qual determina o ponto de aplicação do empuxo, irá depender de fatores como: presença de água no solo, existência ou não de carregamentos em superfície e a liberdade de movimentação da estrutura.

e) <u>Fendas de tração</u>: solos que apresentam coesão existe a possibilidade do surgimento de fendas de tração. A profundidade que estas podem atingir é determinada pelo ponto em que a tensão lateral se anula ( $Z_0$ ).

### 2.3 Estruturas de contenção

### 2.3.1 Estruturas de arrimo

Podem ser utilizadas para obras temporárias e definitivas. No caso de obras temporárias, é introduzido o elemento da estrutura antes da escavação, e à medida que se processa a escavação, complementa-se a estrutura com os elementos adicionais como: pranchões de madeira, estroncas, tirantes, etc, ao terminar a obra, procede-se ao reaterro da escavação e os elementos utilizados no escoramento podem ser retirados e reaproveitados. Em obras definitivas, faz-se a escavação deixando um espaço livre atrás de onde será implantada a estrutura, para facilitar o trabalho, e, uma vez completada a estrutura, procede-se ao reaterro do espaço livre.

### 2.3.1.1 Tipos de estruturas de arrimo

A seguir serão apresentados alguns tipos de estruturas de contenção:

 a) <u>Muros de gravidade:</u> este tipo de estrutura, conta apenas com o peso próprio para manter sua estabilidade, podendo ser construído em concreto, pedra ou em gabião, possuindo seções de tal forma que não precisem ser armados. São estruturas grosseiras, ou seja, não necessitam de equipamentos especiais para sua construção.

Segundo Machado e Machado (1997), por questões de economia de concreto, a seção do muro de gravidade pode ser reduzida, porem é necessário a adição de armadura para absorver os esforços de tração que apareceram, assim, podem ser denominados de muros de arrimo de gravidade aliviada.

Entende-se por muros de arrimo construído em gabiões, os elementos em forma de prisma retangular, fabricado em malha metálica e preenchido com fragmentos de rocha, e que são superpostos de modo a formar a estrutura de contenção. A Figura 9 ilustra alguns exemplos de estruturas de contenção.



Figura 9: Exemplos de estruturas de contenção (a) Muro de gravidade (b) Muro de contenção em Gabião (c) Muro contraforte.

Fonte: Machado e Machado, (1997)

b) <u>Muros semigravitacionais:</u> este tipo de muro permite a redução da massa de concreto, pois é introduzido uma pequena ferragem na parte posterior do muro, na conexão entre a parte vertical e a base.

c) <u>Muros de concreto armado:</u> a estabilidade desse tipo de muro é alcançada através do peso do solo sobre a lateral da estrutura. São construídos para alturas menores que seis metros, caso queira construir muros mais altos é necessário utilizar contrafortes. Muros de concreto armado apresentam problemas quanto a sua resistência ao deslizamento sendo necessário projetar um acréscimo abaixo da base do mesmo, para aumentar sua resistência, como pode ser visto na Figura 10.



Figura 10: Muro de concreto em "T" invertido. Fonte: DEC, 1988

d) <u>Muros de contraforte:</u> são utilizados quando se deseja reduzir momentos e tensões cisalhantes. Conforme o ilustrado na Figura 9(c).

### 2.3.1.2 Estabilidade de muros de arrimo

Na verificação da estabilidade de muros de arrimo, deve-se considerar o equilíbrio estático e elástico da estrutura. Devendo ser investigadas as *condições de estabilidade* que são:

a) <u>Quanto ao tombamento</u>: é a condição para que o muro não tombe, o qual pode ser definida pela expressão:  $F_{tomb} = \frac{M_{resist}}{M_{atuante}} = \frac{R_v * d}{R_H * x} \ge_{2,0(\arg ila)}^{1.5(areia)}$  (2.15)

Onde:

Rv=força peso devido ao peso próprio  $R_h=$ empuxo causado pelo solo

b) Quanto o escorregamento ou deslizamento: é definida pela expressão:  $F_{deslz} = \frac{R_v * tag\phi}{R_b} \ge_{2,0(\arg ila)}^{1.5(areia)}$ (2.16)

Onde:

Rv=força peso devido ao peso próprio

R<sub>h</sub>=empuxo causado pelo solo

c) Quanto às tensões na fundação-pode ser definida como:  

$$\tau_{a}^{\tau_{a}} = \frac{R_{v}}{B} \left( 1 \pm \frac{6e}{AB} \right) \rightarrow \frac{\tau_{A} - \tau_{B}}{2} + B \left( \frac{B}{2} - \frac{B}{3} \right) = R_{v} xe$$
(2.17)

Onde:

Rv=força peso devido ao peso próprio

xe=distância do ponto de aplicação da carga até o centro da figura

d) <u>Estabilidade global -</u> pode ser definida como:

$$R_{h} = E_{a} = \frac{1}{2} * \gamma * H^{2} * tg^{2} \left( 45 - \frac{\phi}{2} \right)$$
(2.18)

Onde:

 $E_a$ =empuxo ativo  $R_h$ =empuxo causado pelo solo h=altura  $\gamma$ =peso específico

## 2.3.2 Cortinas de estacas pranchas

### **2.3.2.1** Estacas pranchas

São elementos formados de aço, madeira ou concreto armado. As estacas em madeira são constituídas por pranchões de grande espessura, possuindo encaixe do tipo macho - fêmea, podendo ser de forma quadrada, trapezoidal ou triangular, apresenta comprimento entre quatro e cinco metros. Este tipo de estaca é pouco utilizado, pois se rompe com facilidade, em contato com terrenos mais resistentes.

Já as estacas de concreto armado, são mais resistentes que as de madeira, pois são peças pré-moldadas, porém são pesadas e de difícil escavação. Portanto, as estacas metálicas, são as que possuem mais vantagens em relação as anteriores e por isso ocorre o seu uso generalizado. Algumas vantagens de se usar estacas metálicas são: possuem maior facilidade de escavação e de recuperação, melhor estanqueidade, grande variedade de módulos de resistência, etc.

### **2.3.2.2** *Cortinas de estacas – pranchas*

Assim denominam-se as estruturas, planas ou curvas, formadas por estacas justapostas, cravadas verticalmente no terreno. As cortinas destinam-se a resistir as pressões

42

laterais devidas ao solo e à água (empuxos). Elas possuem larga aplicação em obras portuárias, proteção de taludes e de fundações de construções vizinhas (CAPUTO, 1988b).

Segundo Magalhães (2003), a principal restrição à utilização de estacas pranchas está relacionada à dificuldade de cravação dos elementos, em terrenos com presença de pedregulhos e matacões. Além disso, a utilização do processo está restrita a alturas de terra a arrimar, uma vez que alturas muito grandes inviabilizam sua utilização pois requerem uma resistência à flexão extremamente elevada para a estaca.

As cortinas diferem estruturalmente dos muros por serem flexíveis e terem peso próprio desprezível em face das demais forças atuantes. Baseadas em seu tipo estrutural e esquema de carregamento, as cortinas classificam-se em dois grupos principais: as de balanço (em "cantilever") e as ancoradas (ou apoiadas) (MAGALHÃES, 2003).

As cortinas em balanço são formadas por estacas cravadas até uma profundidade, abaixo do nível da escavação, de modo que suportem em balanço os esforços provenientes do empuxo de terra. Para existir o equilíbrio da cortina é necessário existir um comprimento mínimo de embutimento (ficha) da cortina no solo abaixo do fundo da escavação, garantindo uma margem de segurança adequada. Os parâmetros de resistência ao cisalhamento, especialmente à coesão, podem viabilizar a execução de cortinas em balanço com alturas consideráveis (MAGALHÃES, 2003).

Machado e Machado (1997), diz que o modo de ruptura das cortinas em balanço é por rotação no entorno do ponto "0", conforme mostra a Figura 11(a) para solo não coesivo, conseqüentemente, a resistência passiva atua tanto na frente da cortina, como na parte posterior da cortina, abaixo do ponto "0" conforme ilustra a Figura 11(b). Em geral, adota-se para projetos uma simplificação, conforme Figura 11(c), assumindo-se que a resistência passiva abaixo do ponto "0" é representada por uma força concentrada  $E_{p2}$  no ponto, ou seja, na profundidade *f* abaixo da superfície do terreno, do lado da escavação.



Figura 11: Cortina de estaca prancha sem ancoragem. Fonte: Machado e Machado, (1997)

No caso de cortinas ancoradas, o esforço decorrente do empuxo de terra é suportado tanto pelo embutimento da estaca abaixo do nível de escavação, quanto através de níveis de ancoragem acima da escavação. O número de ancoragem será em função da altura de solo a arrimar, de modo a reduzir o comprimento de embutimento e os esforços na cortina a valores compatíveis (MAGALHÃES, 2003).

Existem cortinas ancoradas de extremidade livre, admitindo que as estacas correspondem às vigas verticais sobre dois apoios, sendo um a ancoragem e o outro a reação do solo na frente da ficha. O modo de ruptura é por rotação em torno do ponto de aplicação da ancoragem. Possuindo ainda as cortinas de extremidades fixas, que considera a estaca apoiada no topo e engastada na extremidade inferior.

## 2.3.2.3 Estabilidade de cortinas estacas pranchas

Segundo Machado e Machado (1997), para o cálculo das cortinas admita-se geralmente as seguintes hipóteses simplificadoras:

- Distribuição das pressões ativas e passivas, similar às teorias clássicas de distribuição de empuxo do solo sobre a estrutura de contenção;
- Angulo de atrito entre solo-cortina é considerado nulo;
- Selection of the select

### 2.3.3 Outros métodos de contenção

<u>Coluna de solo-cimento</u>: o solo-cimento compactado é aplicado para resolver problemas de estabilização de taludes em que a terra constitui 90% de peso total. Para isso, é necessário conhecer a curva granulométrica e os limites de liquidez e plasticidade, além de dimensionar o maciço a partir do peso específico, coesão e ângulo de atrito interno. Este método funciona como proteção superficial quando não tem função estrutural, se utilizado como muro de arrimo, comporta-se por gravidade. A Figura 12 ilustra este método de contenção.



Figura 12: Coluna de solo-cimento. Fonte: Téchne 56, Novembro de 2001

<u>Cortina atirantada:</u> são muros delgados de concreto, possuindo uma espessura entre 20 e 30cm, contidos por Z tirantes protendidos verticais ou subverticais, como mostra a Figura 13. Este tipo de contenção suporta grandes alturas e são empregados em quase todos os tipos de terreno. Sendo que os tirantes podem ainda, ficar isolado no maciço.



Figura 13: Cortina atirantada. Fonte: Téchne 56, Novembro de 2001

<u>Reforço com geotêxteis:</u> o método consiste na utilização de vários níveis de geotêxteis com a resistência à tração, atrito com o solo e fluência conhecidos. São empregados para executar aterros compactados com face mais íngrime que o usual, como ilustra a Figura 14. A face da contenção deve ser protegida quando a inclinação for superior a um ângulo de 60° contra vandalismo e intempéries, sendo que o abrigo pode ser executado com geogrelha e revestimento vegetal ou malha metálica e concreto projetado. Quando a inclinação é inferior a 60°, a proteção da face é opcional.



Figura 14: Reforços com geotêxteis. Fonte: Téchne 56, Novembro de 2001

<u>Solo grampeado:</u> ou soil nailing, consiste na aplicação de uma tela metálica chumbada e ancorada no maciço e revestida com concreto projetado. Brocas perfuram o maciço e são ancoradas às barras de ferro, que dão resistência ao conjunto, como mostra a Figura 15.



Figura 15: Solo grampeado. Fonte: Téchne 56, Novembro de 2001

<u>Parede – diafragma:</u> são cortinas de concreto armado moldadas no solo, como mostra Figura 16, são executadas em painéis sucessivos, tendo em geral espessura de 0,40 a 1,20 metros e painéis com comprimento mínimo de 2,50 metros. Pode ser utilizado em diferentes tipos de solo, inclusive abaixo do nível do lençol freático, trabalhando como fundação quando contém tanto as pressões laterais quanto às cargas verticais. A solução pode ser empregada em balanço e a escavação é feita ao mesmo tempo em que se estabiliza o solo com lama bentonítica, a armadura é colocada posteriormente e lança-se o concreto no fundo da cava com tubo tremonha, enquanto a lama (menos densa que o concreto) é expulsa.



Figura 16: Parede – diafragma. Fonte: Téchne 56, Novembro de 2001

*Grama armada:* este método de contenção é ideal para preservar o meio ambiente, a solução é executada com aplicação de uma tela de PEAD (polietileno de alta densidade) que se entrelaça com o revestimento vegetal, formando um tapete resistente, como ilustra a Figura 17. Grampos ou ancoragens profundas garantem uma inclinação superior à relação 1:1. Pode ser utilizada em conjunto com gabião plástico tubular e tradicional.



Figura 17: Grama armada. Fonte: Téchne 56, Novembro de 2001

# **3 METODOLOGIA**

### 3.1 Classificação do Estudo

Este estudo tem como propósito pesquisar o coeficiente de atrito solo/estrutura para o solo de Ijuí-RS, e quantificar sua importância no dimensionamento de estruturas de contenção segundo a teoria de Coulomb.

A pesquisa será de ordem quantitativa, uma vez que serão realizados ensaios em laboratório cujos resultados servirão de base para o cálculo e dimensionamento de estruturas de contenção.

Para a realização desta pesquisa serão utilizados, também, dados já pesquisados anteriormente por Viecili (2003) e Bonafé (2004).

## 3.2 Plano de coleta de dados

As atividades práticas deste trabalho serão realizadas no LEC – Laboratório de Engenharia Civil do curso de Engenharia Civil da Unijuí. Resumindo-se a realização do ensaio de cisalhamento direto tipo solo/superfície, no caso desta pesquisa solo/concreto. Serão realizados três grupos de ensaios para as energias de compactação normal, intermediária e modificada. Totalizando 12 (doze) ensaios, utilizando as seguintes tensões normais: (30, 60, 100, 200kPa) conforme Tabela 1. Serão utilizados os parâmetros de compactação determinados por Bonafé (2004).

| Tabela 1: Plano de coleta de dado |
|-----------------------------------|
|-----------------------------------|

| Enorgia       | Ensaio Normal |           |           |           |  |  |  |
|---------------|---------------|-----------|-----------|-----------|--|--|--|
| Energia       | 30kPa         | 60kPa     | 100kPa    | 200kPa    |  |  |  |
| Normal        | Ensaio 1      | Ensaio 2  | Ensaio 3  | Ensaio 4  |  |  |  |
| Intermediária | Ensaio 5      | Ensaio 6  | Ensaio 7  | Ensaio 8  |  |  |  |
| Modificada    | Ensaio 9      | Ensaio 10 | Ensaio 11 | Ensaio 12 |  |  |  |

### 3.3 Materiais utilizados na pesquisa

### 3.3.1 Solo

Será utilizado o solo residual de basalto encontrado no campus da Unijuí, cuja as propriedades físicas médias foram determinadas por Viecili (2003) e estão apresentadas no Quadro 1. A Figura 18 apresenta a distribuição granulométrica, obtida para o solo residual de basalto.

Verifica-se que o solo residual de Ijuí é composto por: 85% de argila, 10% de silte, 4,12% de areia fina, 0,72% de areia média e 0,16% de areia grossa, não possuindo fração de pedregulho. Segundo a classificação HRB o solo classifica-se como sendo A–7–5. Conforme classificação unificada o solo classifica-se como MH (silte de alta compressibilidade). Observando o índice de consistência e de atividade calculados, este solo se enquadra como uma argila dura inativa (VIECILI, 2003).

| Propriedades                       | Valores Médios         |
|------------------------------------|------------------------|
| Limite de Liquidez (LL)            | 59,00%                 |
| Limite de Plasticidade (LP)        | 47,03%                 |
| Índice de Plasticidade (IP)        | 11,97%                 |
| Peso específico real dos grãos (G) | $28,52 \text{ kN/m}^3$ |
| Índice de Atividade (Ia)           | 0,14                   |
| Umidade média de campo (H)         | 34,53%                 |
| Peso específico natural (γn)       | $13,74 \text{ kN/m}^3$ |

Quadro 1: Propriedades físicas do solo Fonte: Viecili (2003)



Figura 18: Distribuição granulométrica do solo situado no campus da Unijuí. Fonte: VIECILI, (2003)

## 3.3.2 Concreto

Será utilizado concreto convencional para a realização dos ensaios, sendo que os corpos-de-prova serão moldados nas dimensões 10,1x10,1x1,5cm conforme ilustra a Figura 19. O traço do concreto utilizado foi o de 1:3:3. Sendo a procedência e dimensão dos agregados: areia fina vinda de Santa Maria (RS), a brita utilizada é a nº0 vinda das pedreiras da região de Ijuí (RS), o cimento utilizado foi o CPII-Z.



Figura 19: Modelo de corpo-de-prova utilizado

### 3.4 Procedimento do ensaio e descrição de equipamentos

Para realizar o ensaio de cisalhamento direto, foi colocado o solo e o concreto na caixa bipartida de cisalhamento, conforme a Figura 20 (a).

A parte inferior da caixa é fixa enquanto a parte superior pode mover-se, aplicando tensões de cisalhamento no solo. Neste caso, foi utilizado concreto convencional na parte inferior da caixa e solo na parte superior para calcular o atrito entre solo/superfície. Nas extremidades do corpo-de-prova serão colocadas pedras porosas para permitir a drenagem durante o ensaio. A Figura 20(b) apresenta o resultado típico de ensaio de cisalhamento direto.



Figura 20: Ensaio de cisalhamento direto; (a) caixa de cisalhamento direto (b) resultado típico de ensaio. Fonte: Adaptado de PINTO (2002)

Para a execução do ensaio foi seguidas as seguintes etapas:

Coletou-se a amostra de solo, no campus da Unijuí, o solo foi destorroado e preparado para o ensaio. Foi moldada à parte superior da caixa de cisalhamento, com solo compactado nas três energias (normal, intermediária e modificada).

A fôrma foi construída dimensões da caixa de cisalhamento, para obter um elemento de concreto nas dimensões da metade da caixa. O elemento de concreto foi colocado na parte

inferior da caixa de cisalhamento para se obter o coeficiente de atrito solo/superfície. Depois de montado todas as etapas do processo a amostra de solo/concreto foi rompida no cisalhador.

Sobre as amostras foram aplicados tensões normais que deveram permanecer constantes até o final do ensaio, essas tensões são na ordem de (30, 60, 100 e 200kPa), e devem variar para cada corpo-de-prova, afim de definir pares diferentes de tensões de ruptura. Durante o ensaio foi feito leituras de deslocamento horizontal ( $\delta_h$ ), força cisalhante (T) e deslocamento vertical ( $\delta_v$ ), que forneceram a relação tensão *versus* deslocamento e a variação de volume do corpo de prova. Os equipamentos utilizados estão ilustrados na Figura 21 e seus acessórios estão descritos na Figura 22.



Figura 21: Equipamento de cisalhamento direto Fonte: VIECILI, (2003)



- 1a-Célula bipartida parte inferior;
- 1b-Célula bipartida parte superior;
- 2-Pedra porosa;
- 3-Placa metálica perfurada;
- 4-Martelo de madeira;
- 5-corpo-de-prova;
- 6-Vazador (10 x 10 x 1,50) cm contendo a amostra;
- 7-Tampa de compressão da carga normal com esfera de aço;
- 8–Placa metálica perfurada;
- 9-Fundo metálico removível;

Figura 22: Acessório do equipamento de cisalhamento direto

## 3.5 Plano de análise e interpretação dos dados

Foi analisado o resultado obtido nos ensaio de cisalhamento direto para as três energias. Sendo os mesmos aplicados no dimensionamento de estruturas de contenção utilizando as teorias de Rankine e Coulomb. Elaborando gráficos e tabelas sempre que possível para comparar os resultados, além da analise de qual método de cálculo é mais recomendável levando em consideração a segurança e economia.

# 4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

Neste capítulo serão apresentados e analisados os resultados, obtidos com os ensaios de cisalhamento direto.

### 4.1 Comportamento mecânico

A seguir serão apresentados os resultados dos ensaios de cisalhamento direto para o caso grão/superfície (GS) e grão/grão (GG), para as três energias de compactação (normal, intermediária e modificada).

### 4.1.1 Energia Normal

A Figura 23 mostra o gráfico onde são plotados o deslocamento horizontal *versus* tensão cisalhante, e na Figura 24 tem-se o gráfico onde são plotados o deslocamento horizontal *versus* deformação vertical, para energia normal de compactação, para o caso grão/superfície e grão/grão. Em cada gráfico estão plotados quatro ensaios variando a tensão normal: 30, 60, 100 e 200kPa, quanto maior a tensão normal aplicada maior é a tensão cisalhante e maior a deformação vertical, os quais nos fornecem os valores de ângulo de atrito e coesão, para diferentes deslocamentos.

A partir da Figura 23 é possível notar que o solo possui características de uma argila normalmente adensada, possuindo tensão confinante acima da tensão de pré-adensamento. A resistência ao cisalhamento das argilas normalmente adensadas depende do atrito entre as partículas e das tensões efetivas. Quando são aplicadas as tensões confiantes nos corpos-de-prova, estes sofrem adensamento, ficando assim normalmente adensados.

Através da Figura 24, notou-se que no caso GG apresentou comportamento dilatante, pois com o aumento da tensão houve um aumento do deslocamento vertical. Já para o caso GS, notou-se um comportamento compressivo.



Figura 23: Resultado do ensaio de cisalhamento direto-energia normal



Figura 24: Resultado do ensaio de cisalhamento direto-energia normal

### 4.1.2 Energia intermediária

Na Figura 25 estão plotados o deslocamento horizontal *versus* tensão cisalhante, e na Figura 26 o deslocamento horizontal *versus* deformação vertical, para energia intermediária de compactação, para o caso grão/superfície e grão/grão.

Através da análise do gráfico da Figura 25, pode-se perceber que para as tensões normais de 30, 60 e 100kPa para o caso GG, apresenta valores de pico, se tratando assim de uma argila pré adensada. Para a tensão de 200kPa o solo apresentou comportamento de uma argila normalmente adensada.



Figura 25: Resultado do ensaio de cisalhamento direto-energia intermediária

O gráfico da Figura 26, nos mostra que no caso GG o solo apresentou um comportamento dilatante, pois com o aumento da tensão normal houve um aumento do deslocamento vertical. Para o caso GS, o solo apresentou um comportamento compressivo, diminuindo sua deformação vertical com o aumento da tensão normal.



Figura 26: Resultado do ensaio de cisalhamento direto - energia intermediária

### 4.1.3 Energia modificada

Nas Figuras 27 e 28, estão plotados o deslocamento horizontal *versus* tensão cisalhante, e o deslocamento horizontal *versus* deformação vertical respectivamente, para energia modificada de compactação, para o caso grão/superfície e grão/grão.

A partir da Figura 27 é possível notar que o solo no caso GG possui características de uma argila pré-adensada. Já para o caso GS, se trata de um resultado típico de uma argila normalmente adensada, possuindo tensão confinante acima da tensão de pré-adensamento.



Figura 27: Resultado do ensaio de cisalhamento direto-energia modificada

Analisando o gráfico da Figura 28, pode-se notar que no caso GG, para as tensões de 100 e 200kPa, o solo apresentou comportamento dilatante, e para as demais tensões compressivo. Para o caso GS, o solo apresentou comportamento compressivo para todas as tensões.



Figura 28: Resultado do ensaio de cisalhamento direto - energia modificada

## 4.2 Envoltórias de resistência para diferentes deslocamentos

Este item será dividido em subitens, onde serão apresentadas as envoltórias de resistência para os casos grão/superfície e grão/grão, para a energia normal, intermediária e modificada. Sendo apresentados também os ângulos de atrito e coesão para cada energia de compactação.

### 4.2.1 Atrito e coesão para energia normal

Na Figura 29(a), estão plotados os ajustes lineares ( $\sigma x \tau$ ) para diferentes deslocamentos para o caso grão/superfície. Os resultados são linhas de tendências denominadas envoltórias. Estas determinam o ângulo de atrito, através da inclinação que fazem com a horizontal, e a coesão pelo prolongamento da linha de tendência até o encontro com a linha em que a tensão normal corresponde a zero. Na Figura 29(b), estão plotados as resistências para diferentes deslocamentos para o caso grão/grão, resultados obtidos através do trabalho de Bonafé (2004).



Figura 29: Envoltórias para diferentes deslocamentos: (a): Caso grão/superfície (b): Caso grão/grão.

Com a realização dos ensaios e a construção dos gráficos, obtiveram-se os valores de ângulo de atrito e coesão encontrados na Tabela 2, para o caso grão/superfície (GS) e grão/grão (GG).

| Casa | Parâmetro                          | Deslocamento |        |        |        |        |        |
|------|------------------------------------|--------------|--------|--------|--------|--------|--------|
| Casu |                                    | 0,5 mm       | 1,0 mm | 1,5 mm | 2,0 mm | 2,5 mm | 3,0 mm |
| GG   | c' (kPa)                           | 19,51        | 23,85  | 24,08  | 23,22  | 21,02  | 24,66  |
|      | φ ( <i>°</i> )                     | 13,00        | 20,00  | 25,00  | 28,00  | 30,00  | 30,00  |
| GS   | c' (kPa)                           | 14,69        | 15,30  | 13,27  | 12,94  | 13,33  | 14,75  |
|      | $\delta(^{o})$                     | 13,17        | 16,27  | 19,08  | 19,59  | 18,79  | 18,04  |
| GS/  | c' <sub>GS</sub> /c' <sub>GG</sub> | 0,75         | 0,64   | 0,55   | 0,56   | 0,63   | 0,60   |
| GG   | $\delta \phi$                      | 1,01         | 0,81   | 0,76   | 0,70   | 0,63   | 0,60   |

Tabela 2: Resultado do ensaio de cisalhamento direto para os casos GG e GS

A Figura 30 nos mostra a variação do ângulo de atrito mostra a variação da coesão para os casos GS e GG.



# Deslocamento horizontal (mm)

Figura 30: Ângulo de atrito e coesão para GS e GG

Percebe-se, que o ângulo de atrito para o caso GG obteve um crescimento com o aumento do deslocamento, passando de 13,0° a 30,0° mantendo o resultado para os dois últimos deslocamentos. No caso GS, o ângulo de atrito obteve um crescimento de 13,17° a 19,59° e depois começou a diminuir chegando aos 3,0 mm de deslocamento com um valor de 18,04°. A relação GS/GG obteve uma variação de 1,01 a 0,60.

Já para a coesão, no caso GG, teve um crescimento nos três primeiros deslocamentos, vindo a diminuir nos dois seguintes e voltando a aumentar no último, obtendo assim uma constante variação, sendo seu menor valor de 19,51kPa e o maior de 24,66kPa. Para o caso GS, a coesão também obteve bastante variação, aumentando nos dois primeiros deslocamentos, diminuindo nos dois seguintes e voltando a aumentar nos dois últimos.

### 4.2.2 Atrito e coesão para energia intermediária

Na Figura 31 (a), estão plotados as resistências para o caso grão/superfície, e na Figura 31(b) estão plotados as resistências para o caso grão/grão, obtidos através dos ensaios realizados por Bonafé, (2004).



Através da realização dos ensaios de cisalhamento direto e a construção dos gráficos, obtiveram-se os valores encontrados na Tabela 3, para o caso GS e GG.

| Casa  | Parâmetro                           | Deslocamento |        |        |        |        |        |
|-------|-------------------------------------|--------------|--------|--------|--------|--------|--------|
| Casu  |                                     | 0,5 mm       | 1,0 mm | 1,5 mm | 2,0 mm | 2,5 mm | 3,0 mm |
| CC    | c' (kPa)                            | 28,90        | 39,93  | 44,46  | 39,69  | 25,75  | 20,42  |
| 00    | φ (°)                               | 12,16        | 17,68  | 23,00  | 27,64  | 32,00  | 34,52  |
| GS    | c' (kPa)                            | 15,23        | 24,09  | 25,29  | 22,02  | 22,80  | 21,03  |
|       | δ                                   | 8,83         | 9,23   | 10,55  | 11,93  | 12,87  | 13,88  |
| GS/GG | c' <sub>GS</sub> / c' <sub>GG</sub> | 0,53         | 0,60   | 0,57   | 0,55   | 0,89   | 1,03   |
|       | $\delta / \phi$                     | 0,73         | 0,52   | 0,46   | 0,43   | 0,40   | 0,40   |

Tabela 3: Resultado do ensaio de cisalhamento direto para os casos GG e GS

Através da Tabela 3 é possível perceber que para os casos GG e GS, o ângulo de atrito para obteve um crescimento constante, passando de 12,16° para 34,52° e 8,83° para, respectivamente. Ao contrário do que aconteceu para a energia normal, onde somente o caso GG obteve um ângulo de atrito crescente e constante.

Para a coesão, no caso GG, teve um crescimento nos três primeiros deslocamento vindo a diminuir nos três últimos, obtendo como maior valor 44,46kPa e menor valor 20,42kPa. Para o caso GS, aumentou nos dois primeiros deslocamentos, diminuiu no seguinte, aumentou e diminuiu novamente, possuindo como maior valor 25,29kPa e menor valor 15,23kPa.

Na Figura 32, estão plotados o ângulo de atrito e coesão para os casos GS e GG.



Figura 32: Ângulo de atrito e coesão para GS e GG – energia intermediária

# 4.2.3 Atrito e coesão para energia modificada

Na Figura 33(a), estão plotados as resistências para diferentes deslocamentos para o caso grão/superfícies, e na Figura 33(b), para o caso grão/grão. Determinando assim, o ângulo de atrito e a coesão para cada deslocamento.



(b): Caso grão/grão.

Com a realização dos ensaios de cisalhamento direto e a construção dos gráficos, obtiveram-se os valores encontrados na Tabela 4, para o caso GS e GG.

| Casa  | Parâmetro                           | Deslocamento |        |        |        |        |        |
|-------|-------------------------------------|--------------|--------|--------|--------|--------|--------|
| Casu  |                                     | 0,5 mm       | 1,0 mm | 1,5 mm | 2,0 mm | 2,5 mm | 3,0 mm |
| CC    | c' (kPa)                            | 27,95        | 41,43  | 20,47  | 17,15  | 12,97  | 14,35  |
| 00    | φ (°)                               | 21,32        | 30,00  | 38,85  | 40,44  | 40,67  | 39,00  |
| CS    | c' (kPa)                            | 9,01         | 13,77  | 17,41  | 22,31  | 21,24  | 21,12  |
| US    | δ                                   | 10,60        | 11,16  | 11,08  | 10,00  | 11,03  | 11,00  |
| GS/GG | c' <sub>GS</sub> / c' <sub>GG</sub> | 0,32         | 0,33   | 0,85   | 1,30   | 1,64   | 1,47   |
|       | δ/φ                                 | 0,50         | 0,37   | 0,29   | 0,25   | 0,27   | 0,28   |

Tabela 4: Resultado do ensaio de cisalhamento direto para os casos GG e GS

Esta Tabela 4 nos mostra a variação do ângulo de atrito e coesão para os dois casos GG e GS. Percebendo que no caso GG o ângulo de atrito teve um crescimento constante até o deslocamento de 2,5mm, depois diminui, ficando com o menos valor de 21,32° e maior valor de 40,67°, a coesão para este caso teve uma variação constante, ficando com 12,97kPa no menor valor e 41,43kPa no maior valor. Já no caso GS, o ângulo de atrito não obteve um crescimento constante, variando de 10,00° a 11,16°, como menor e maior valor respectivamente, a coesão obteve como menor e maior valor, respectivamente de 9,01kPa e 22,31kPa.

Na Figura 34, estão plotados o ângulo de atrito e coesão para os casos GS e GG, para melhor poder comparar os resultados.



Figura 34: Ângulo de atrito e coesão para GS e GG-energia modificada

## 4.3 Envoltória de resistência para pico

Este item será dividido em subitens, onde serão apresentadas as envoltórias de resistência para os casos grão/superfície e grão/grão, para a energia normal, intermediária e modificada para pico de resistência. Sendo apresentados também os ângulos de atrito e coesão para cada energia de compactação.

### 4.3.1 Atrito e coesão para energia normal

Na Figura 35, estão plotados as resistências de pico para o caso grão/superfície e grão/grão. Os resultados são linhas de tendências denominadas envoltórias. Estas determinam o ângulo de atrito, através da inclinação que fazem com a horizontal, e a coesão pelo prolongamento da linha de tendência até o encontro com a linha em que a tensão normal é zero.

Neste caso o ângulo de atrito e coesão de pico para o caso GS são: 18,10° e 13,631kPa, respectivamente e o ângulo de atrito e coesão para o caso GG são: 30,28° e 26,07kPa.

Os coeficientes de correlação  $R^2$ , apresentam valores para GS e GG de 0,99 e 0,99 respectivamente, os quais são bastante satisfatórios.



Figura 35: Envoltória de pico para os casos GS e GG

# 4.3.2 Atrito e coesão para energia intermediária

Na Figura 36, estão plotadas as resistências de pico para a energia intermediária para os casos GS e GG.

Para este caso, o ângulo de atrito e coesão de pico para o caso GS são: 11,23° e 19,65kPa, respectivamente e o ângulo de atrito e coesão para o caso GG são: 32,48° e 36,68kPa.

Os coeficientes de correlação  $R^2$ , apresentam valores para GS e GG de 0,76 e 0,98 respectivamente.



Figura 36: Envoltória de pico para os casos GS e GG

## 4.3.3 Atrito e coesão para energia modificada

Na Figura 37, estão plotadas as resistências de pico para a energia modificada para os casos GS e GG.

Para este caso, o ângulo de atrito e coesão de pico para o caso GS são: 12,41° e 11,047kPa, respectivamente e o ângulo de atrito e coesão para o caso GG são: 35,51° e 41,168kPa.

Os coeficientes de correlação  $R^2$ , apresentam valores para GS e GG de 0,99 e 1,00 respectivamente.



Figura 37: Envoltória de pico para os casos GS e GG

# 4.3.4 Análise dos resultados para as três energias de compactação

Através da elaboração dos gráficos foi possível montar a Tabela 5, onde estão apresentados as resistências de pico para os casos GS e GG para as três energias de compactação.

Tabela 5: Resistências de pico para os casos GS e GG para as três energias de compactação

| Casa             | Parâmotro                           | Energia de Compactação |               |            |  |  |  |
|------------------|-------------------------------------|------------------------|---------------|------------|--|--|--|
| Caso I al ametro |                                     | Normal                 | Intermediária | Modificado |  |  |  |
| GG               | c' (kPa)                            | 26,06                  | 36,68         | 41,16      |  |  |  |
|                  | φ (°)                               | 30,28                  | 32,48         | 35,51      |  |  |  |
| GS               | c' (kPa)                            | 13,63                  | 19,65         | 11,05      |  |  |  |
|                  | δ                                   | 18,10                  | 11,23         | 12,41      |  |  |  |
|                  | c' <sub>GS</sub> / c' <sub>GG</sub> | 0,52                   | 0,53          | 0,27       |  |  |  |
| 00/00            | δ/φ                                 | 0,60                   | 0,35          | 0,35       |  |  |  |

A partir dos dados da Tabela 5 foi possível montar o gráfico da Figura 38, onde estão plotados os valores de ângulo de atrito e coesão em função da energia.

Os valores de energia calculados para a energia de compactação normal, intermediária e modificados são respectivamente: 5,9; 13,06; 27,98kg.cm/cm<sup>3</sup>. Isso mostra que quanto maior a energia maiores são os parâmetros de resistência ao cisalhamento, todavia menor é a relação  $\delta/\phi$  o que indica que a teoria de Coulomb tem maior resistência para maior energia.



Figura 38: Parâmetro de resistência versus energia
# **5 ANÁLISE PARAMÉTRICA E PRÉ-DIMENSIONAMENTO**

Neste capítulo são calculados os valores de Empuxo (E) segundo as Teorias de Rankine e Coulomb, utilizando diferentes valores de altura (h), peso específico aparente ( $\gamma_n$ ), ângulo de atrito ( $\phi$ ) e ângulo de atrito solo/estrutura ( $\delta$ ). Sendo que o objetivo é analisar qual a influência destes parâmetros nos valores no empuxo atuante em estruturas de contenção.

#### 5.1 Variáveis utilizadas para o dimensionamento

Foram calculados os valores de E segundo as Teorias de Rankine e de Coulomb, sendo que para cada um foi utilizados um conjunto de variáveis, conforme a Tabela 6.

| Variações           |    |      |      |    |      |  |
|---------------------|----|------|------|----|------|--|
| h (m)               | 2  | 4    | 6    | 8  | 10   |  |
| $\gamma_n (kN/m^3)$ | 13 | 16   | 19   | 21 | 23   |  |
| φ (°)               | 20 | 26   | 32   | 40 | 46   |  |
| δ (°)               | 16 | 20,8 | 25,6 | 32 | 36,8 |  |

Tabela 6: Parâmetros de entrada para cálculo de empuxo

Os valores apresentados na Tabela 6, são variações entre os valores máximos e mínimos e representam o universo de valores encontrado na prática de engenharia. Os valores de  $\delta$  adotado foi de 0,8 $\phi$ , sugerido por MACHADO e MACHADO (1997).

Para deixar os gráficos na mesma escala, foi feita uma normalização, no intervalo de -1 a 1, variando de 0,5 em 0,5 os quais correspondem respectivamente aos valores de h,  $\gamma$ ,  $\phi$ ,  $\delta$ .

O modelo estrutural utilizado para o cálculo de E, é o apresentado na Figura 39, mostrada a seguir.



Figura 39: Modelo estrutural para cálculo de E

### 5.2 Dimensionamento segundo a Teoria de Rankine

Para o dimensionamento foram considerados os valores de h,  $\gamma$ ,  $\phi$ , apresentados na Tabela 6. A seguir é apresentado o procedimento de cálculo, sendo utilizado as Equações 2.4 e 2.18.

Os cálculos foram realizados da seguinte maneira:

Para o conjunto de valores:  $\phi = 20^{\circ}$   $\gamma = 13kN/m^{3}$ h=2m

1) Determinou-se através da Equação 2.4 o valor de Ka.

$$K_{a} = \frac{\tau_{ha}}{\tau_{v}} = \frac{1 - \operatorname{sen} \phi}{1 + \operatorname{sen} \phi} = tg^{2} \left( 45 - \frac{\phi}{2} \right)$$

$$K_{a} = 0,490$$
(2.4)

2) Através da equação 2.19, determinou-se o valor do empuxo, para os valores de  $\gamma$  e h considerados.

$$E = \frac{1}{2} * h^2 * \gamma * k_a$$
 (2.19)

*E*=12,75*kN*/*m* 

Da mesma maneira foram calculados os demais valores de E. Nas Tabelas 7 a 11 são mostrados os valores de E calculados através do software Excel, para cada valor de  $\phi$ .

| $h(m) \Rightarrow$ |    | 2     | 4     | 6      | 8      | 10     |
|--------------------|----|-------|-------|--------|--------|--------|
|                    | 13 | 12,75 | 50,99 | 114,73 | 203,96 | 318,69 |
| $\gamma_n$         | 16 | 15,69 | 62,76 | 141,20 | 251,03 | 392,23 |
| $(kN/m^3)$         | 19 | 18,63 | 74,52 | 167,68 | 298,10 | 465,78 |
|                    | 21 | 20,59 | 82,37 | 185,33 | 329,47 | 514,80 |
|                    | 23 | 22,55 | 90,21 | 202,98 | 360,85 | 563,83 |

Tabela 7: Valores de empuxo para  $\phi=20^{\circ}$  (K<sub>a</sub>=0,490)

Tabela 8: Valores de empuxo para  $\phi=26^{\circ}$  (K<sub>a</sub>=0,390)

| h (m       | $() \Rightarrow$ | 2     | 4     | 6      | 8      | 10     |
|------------|------------------|-------|-------|--------|--------|--------|
|            | 13               | 10,15 | 40,61 | 91,37  | 162,43 | 253,80 |
| $\gamma_n$ | 16               | 12,49 | 49,98 | 112,45 | 199,92 | 312,37 |
| $(kN/m^3)$ | 19               | 14,84 | 59,35 | 133,54 | 237,40 | 370,94 |
|            | 21               | 16,40 | 65,60 | 147,59 | 262,39 | 409,98 |
|            | 23               | 17,96 | 71,84 | 161,65 | 287,38 | 449,03 |

Tabela 9: Valores de empuxo para  $\phi=32^{\circ}$  (K<sub>a</sub>=0,307)

| h (m       | $n) \Rightarrow$ | 2     | 4     | 6      | 8      | 10     |
|------------|------------------|-------|-------|--------|--------|--------|
|            | 13               | 7,99  | 31,95 | 71,90  | 127,82 | 199,72 |
| $\gamma_n$ | 16               | 9,83  | 39,33 | 88,49  | 157,32 | 245,81 |
| $(kN/m^3)$ | 19               | 11,68 | 46,70 | 105,08 | 186,81 | 291,89 |
|            | 21               | 12,90 | 51,62 | 116,14 | 206,48 | 322,62 |
|            | 23               | 14,13 | 56,54 | 127,20 | 226,14 | 353,35 |

Tabela 10: Valores de empuxo para  $\phi=40^{\circ}$  (K<sub>a</sub>=0,217)

| h (m       | $n) \Rightarrow$ | 2     | 4     | 6     | 8      | 10     |
|------------|------------------|-------|-------|-------|--------|--------|
|            | 13               | 5,65  | 22,61 | 50,88 | 90,46  | 141,34 |
| γn         | 16               | 6,96  | 27,83 | 62,62 | 111,33 | 173,95 |
| $(kN/m^3)$ | 19               | 8,26  | 33,05 | 74,37 | 132,20 | 206,57 |
|            | 21               | 9,13  | 36,53 | 82,19 | 146,12 | 228,31 |
|            | 23               | 10,00 | 40,01 | 90,02 | 160,04 | 250,06 |

| $h(m) \Rightarrow$ |    | 2    | 4     | 6     | 8      | 10     |
|--------------------|----|------|-------|-------|--------|--------|
|                    | 13 | 4,24 | 16,98 | 38,20 | 67,91  | 106,10 |
| $\gamma_n$         | 16 | 5,22 | 20,89 | 47,01 | 83,58  | 130,59 |
| $(kN/m^3)$         | 19 | 6,20 | 24,81 | 55,83 | 99,25  | 155,07 |
|                    | 21 | 6,86 | 27,42 | 61,70 | 109,69 | 171,40 |
|                    | 23 | 7,51 | 30,04 | 67,58 | 120,14 | 187,72 |

Tabela 11: Valores de empuxo para  $\phi=46^{\circ}$  (K<sub>a</sub>=0,163)

Na Figura 40, estão plotados os valores de E para o conjunto de valores apresentados na Tabela 5.

Para a montagem do gráfico, considerou-se todos os valores de uma das variáveis ( $\phi$ ,  $\gamma_n$  e h) e considerou-se as outras duas com seus valores médios. Por exemplo para  $\phi$  (20 a 46) utilizou-se  $\gamma_n$ =19kN/m<sup>3</sup> e h=6m.



Figura 40: Valor normalizado da variável

Podemos perceber através da Figura 40, que a altura apresenta maior influência no valor de E (com o coeficiente angular a igual 140,11 para cada unidade), ou seja, ao aumentar o valor de h o empuxo aumenta, o mesmo ocorre com o valor do peso específico, porém com

menor intensidade, neste caso o coeficiente angular é igual a 27,65 para cada unidade. Já com o ângulo de atrito ocorre o oposto, pois ao aumentar o seu valor, aumenta a resistência e reduz a tensão horizontal (E), apresentando coeficiente angular igual à -56,57 para cada unidade.

#### 5.3 Dimensionamento segundo a Teoria de Coulomb

Para o dimensionamento foram considerados os valores de h,  $\gamma$ ,  $\phi$ , apresentados na Tabela 5. A seguir é apresentado o procedimento de cálculo, sendo utilizado a Equação (2.12) e a Equação de empuxo (2.19).

Os cálculos foram realizados da seguinte maneira:

Para o conjunto de valores:  $\phi=20^{\circ}$   $\gamma=13 \text{ kN/m}^3$  h=2m $\delta=16^{\circ}$ 

1) Determinou-se através da equação 2.12 o valor de Ka.

$$K_{a} = \frac{\operatorname{sen}^{2}(\alpha + \phi')}{\operatorname{sen}^{2}(\alpha) * \operatorname{sen}(\alpha - \delta) \left[ 1 + \sqrt{\frac{\operatorname{sen}(\phi' + \delta) * \operatorname{sen}(\phi' - \beta)}{\operatorname{sen}(\alpha - \delta) * \operatorname{sen}(\alpha + \beta)}} \right]^{2}}$$
(2.12)  
$$K_{a} = 0,433$$

Foram utilizados valores de 90° para  $\alpha$  e  $\beta$  igual a 0°, para um muro na vertical sem inclinação do terreno.

2) Através da Equação 2.19, determinou-se o valor do empuxo, para os valores de  $\gamma$  e h considerados.

$$E = \frac{1}{2} * h^2 * \gamma * k_a$$
 (2.19)

Da mesma maneira são calculados os valores de E para os demais valores de  $\phi$ . Nas Tabelas 12 a16 são mostrados os valores de E calculados através do software Excel, para cada valor de  $\phi$ .

| $h\left(m ight) \Rightarrow$ |    | 2     | 4     | 6      | 8      | 10     |
|------------------------------|----|-------|-------|--------|--------|--------|
|                              | 13 | 11,25 | 44,98 | 101,21 | 179,93 | 281,15 |
| $\gamma_n$                   | 16 | 13,84 | 55,36 | 124,57 | 221,46 | 346,03 |
| $(kN/m^3)$                   | 19 | 16,44 | 65,75 | 147,93 | 262,98 | 410,91 |
|                              | 21 | 18,17 | 72,67 | 163,50 | 290,66 | 454,16 |
|                              | 23 | 19,90 | 79,59 | 179,07 | 318,35 | 497,42 |

Tabela 12: Valores de empuxo para  $\delta=16^{\circ}$ ,  $\phi=20^{\circ}$  (K<sub>a</sub>=0,433)

| Tabela 13: Valores de empuxo para | ι δ=20,8°, φ=26° | $(K_a=0,344)$ |
|-----------------------------------|------------------|---------------|
|-----------------------------------|------------------|---------------|

| h (m       | $() \Rightarrow$ | 2     | 4     | 6      | 8      | 10     |
|------------|------------------|-------|-------|--------|--------|--------|
|            | 13               | 8,95  | 35,79 | 80,52  | 143,15 | 223,68 |
| $\gamma_n$ | 16               | 11,01 | 44,05 | 99,11  | 176,19 | 275,30 |
| $(kN/m^3)$ | 19               | 13,08 | 52,31 | 117,69 | 209,22 | 326,91 |
|            | 21               | 14,45 | 57,81 | 130,08 | 231,25 | 361,33 |
|            | 23               | 15,83 | 63,32 | 142,47 | 253,27 | 395,74 |

Tabela 14: Valores de empuxo para  $\delta=25,6^{\circ}, \varphi=32^{\circ}$  (K<sub>a</sub>=0,275)

| h (m       | $n) \Rightarrow$ | 2     | 4     | 6      | 8      | 10     |
|------------|------------------|-------|-------|--------|--------|--------|
|            | 13               | 7,14  | 28,55 | 64,24  | 114,20 | 178,44 |
| Υ'n        | 16               | 8,78  | 35,14 | 79,06  | 140,56 | 219,62 |
| $(kN/m^3)$ | 19               | 10,43 | 41,73 | 93,89  | 166,91 | 260,80 |
|            | 21               | 11,53 | 46,12 | 103,77 | 184,48 | 288,25 |
|            | 23               | 12,63 | 50,51 | 113,65 | 202,05 | 315,71 |

Tabela 15: Valores de empuxo para  $\delta=32^\circ$ ,  $\phi=40^\circ$  (K<sub>a</sub>=0,202)

| h (m       | $i) \Rightarrow$ | 2    | 4     | 6     | 8      | 10     |
|------------|------------------|------|-------|-------|--------|--------|
|            | 13               | 5,26 | 21,05 | 47,36 | 84,19  | 131,55 |
| γn         | 16               | 6,48 | 25,91 | 58,29 | 103,62 | 161,91 |
| $(kN/m^3)$ | 19               | 7,69 | 30,76 | 69,22 | 123,05 | 192,27 |
|            | 21               | 8,50 | 34,00 | 76,50 | 136,01 | 212,51 |
|            | 23               | 9,31 | 37,24 | 83,79 | 148,96 | 232,75 |

| h (m       | $a) \Rightarrow$ | 2    | 4     | 6     | 8      | 10     |
|------------|------------------|------|-------|-------|--------|--------|
|            | 13               | 4,15 | 16,58 | 37,31 | 66,33  | 103,64 |
| $\gamma_n$ | 16               | 5,10 | 20,41 | 45,92 | 81,64  | 127,56 |
| $(kN/m^3)$ | 19               | 6,06 | 24,24 | 54,53 | 96,95  | 151,48 |
|            | 21               | 6,70 | 26,79 | 60,27 | 107,15 | 167,42 |
|            | 23               | 7,33 | 29,34 | 66,01 | 117,36 | 183,37 |

Tabela 16: Valores de empuxo para  $\delta=36,8^{\circ}, \phi=46^{\circ}$  (K<sub>a</sub>=0,159)

Na Figura 41, estão plotados os valores de E para o conjunto de valores apresentados na Tabela 5.

Para a montagem do gráfico, considerou-se todos os valores de uma das variáveis ( $\phi$ ,  $\gamma_n$  e h) e considerou-se as outras duas com seus valores médios. Por exemplo para  $\phi$  (20 a 46) utilizou-se  $\gamma_n$ =19kN/m<sup>3</sup> e h=6m, sendo o valor de  $\delta$ =0,8 $\phi$ .



Figura 41: Empuxo segundo a teoria de Coulomb

Pode-se perceber através da Figura 41, que a altura apresenta maior influência no valor de E (com coeficiente angular igual a 125,18 para cada unidade), ou seja, ao aumentar o valor de h o valor de E aumenta, o mesmo ocorre com o peso específico, porém com menos intensidade (com coeficiente angular igual a 24,71 para cada unidade) e para o valor de ângulo de atrito ocorre o contrário, pois ao aumentar o seu valor diminui o valor de E, possuindo coeficiente angular igual à -47,10 para cada unidade.

## 5.4 Comparação dos resultados de empuxo segundo as Teorias de Coulomb e Rankine

Para melhor comparar as duas Teorias, montou-se um gráfico, como mostra a Figura 42, onde estão plotados os valores médios de empuxo para cada valor de  $\phi$ .



Figura 42: Empuxo segundo as duas teorias

Na Figura 42, as linhas tracejadas representam os valores de empuxo para a Teoria de Rankine, e as linhas cheias representam os valores para a Teoria de Coulomb. Percebe-se que a Teoria de Coulomb apresenta os menores valores de empuxo, ou seja, utilizando o coeficiente de atrito solo/estrutura, os valores de empuxo encontrados apresentam um menor valor se comparado aos valores de empuxo calculados pela teoria de Rankine a qual não considera o atrito entre o solo e a estrutura. Quanto menor o h menor a diferença entre as teorias de Rankine e Coulomb, portanto para pequenas h não há diferença significativa.

Para melhor visualizar a diferença entre as duas teorias, montou-se o gráfico da Figura 43, onde é plotado o percentual de diferença entre o E calculados para as teorias de Coulomb e Rankine.



Figura 43: Diferença entre as teorias

Analisando a Figura 43, nota-se que ao aumentar o valor de  $\phi$ , a diferença de empuxo entre as teorias diminui. Neste caso para a diferença de empuxo diminui de 12 a 2%, conforme o valor de  $\phi$  aumenta, desta forma a consideração do atrito solo/estrutura torna-se mais relevante quando os valores de  $\phi$  são menores.

# 5.5 Dimensionamento de uma estrutura de contenção segundo as Teorias de Coulomb e Rankine

Com o intuito de verificar o impacto prático da consideração do atrito solo estrutura nas dimensões e consumo de materiais para construção de uma estrutura de contenção foram dimensionadas duas estruturas tipo muro de concreto armado. O modelo de muro utilizado para realizar o dimensionamento segundo as teorias está apresentado na Figura 44.



Figura 44: Muro utilizado para o dimensionamento

### Onde:

h=altura total do muro

a=largura do muro

b=comprimento da base

c=profundidade do muro

Rv1 e Rv2=força peso devido ao peso próprio do muro

Rv3=força peso devido ao peso próprio do solo de reaterro

Rh=empuxo causado pelo solo

Para o dimensionamento do muro de contenção, não foi considerado o empuxo passivo do lado esquerdo da Figura 44, representado pela profundidade "c". Não foi realizada a verificação da estabilidade global e da tensão na fundação não fazem parte dos objetivos desta pesquisa. Os dados adotados correspondem as médias calculadas no itens 5.2 e 5.3.

### a) Dimensionamento segundo Rankine

Dados:  $\phi=32^{\circ}$  h=6m  $\gamma_n=19 \text{ kN/m}^3$  Rh=105,08 kN/m a=0,4 m b=2,80 m $\gamma_{concreto}=25 \text{ kN/m}^3$ 

$$R_{v1} = a * (h-a) * \gamma_{c}$$

$$R_{v1} = 0,4 * (6-0,4) * 25$$

$$R_{v2} = a * b * \gamma_{c}$$

$$R_{v2} = 0,4 * 2,80 * 25$$

$$R_{v2} = 0,4 * 2,80 * 25$$

$$R_{v3} = (b-a) * (h-a) * 19$$

$$R_{v3} = (2,80-0,4) * (h-0,4) * 19$$

$$R_{v3} = 2,40 * 5,6 * 19$$

$$R_{v3} = 2,40 * 5,6 * 19$$

$$R_{v3} = 255,36 \text{ kN/m}$$

$$d = \frac{\left(R_{v1} * \frac{a}{2}\right) + \left(R_{v2} * \frac{b}{2}\right) + \left[R_{v3} * \left(\left(\frac{2,80-a}{2}\right) + (a)\right)\right]}{\sum R_{v}}$$

$$d = \frac{\left(56 * \frac{0,4}{2}\right) + \left(28 * \frac{2,80}{2}\right) + \left[255,36 * \left(\left(\frac{2,80-0,4}{2}\right) + (0,4)\right)\right]}{339,36}$$

$$d = \frac{\left(56 * 0,2\right) + \left(28 * 1,4\right) + \left(255,36 * 1,60\right)}{339,36} = \frac{11,2 + 39,2 + 408,58}{339,36}$$

$$d = \frac{458,98}{339,36}$$

d=1,35m

$$\chi = \frac{1}{3} * h$$
  
$$\chi = \frac{1}{3} * 6$$
  
**X=2,00m**

Verificação da estabilidade do muro:

<u>Tombamento</u>

$$F_{Tom} = \frac{R_{v} * d}{R_{h} * \chi} \to F_{Tom} = \frac{339,36*1,35}{105,08*2} \to F_{Tom} = \frac{458,14}{210,16}$$
$$F_{Tom} = 2,18 > 2 \quad OK!$$

<u>Deslizamento</u>

$$F_{Desl} = \frac{R_v * tag\phi}{R_h} \to F_{Desl} = \frac{339,36 * Tag 32^\circ}{105,08}$$
$$F_{Desl} = \frac{212,06}{105,08}$$
$$F_{Desl} = 2,02 > 2 \quad OK!$$

b) Dimensionamento segundo Coulomb

Dados:  $\phi=32^{\circ}$  h=6m  $\gamma_n=19 \text{ kN/m}^3$  Rh=93,89 kN/m a=0,4 m b=2,60 m  $\gamma_{concreto}=25 \text{ kN/m}^3$  $\delta=0,8*\phi=25,6^{\circ}$ 

$$R_{v1} = a * (h-a) * \gamma_c$$

$$R_{v1} = 0,4 * (6-0,4) * 25$$

$$R_{v2} = a * b * \gamma_c$$

$$R_{v2} = 0,4 * 2,60 * 25$$

$$R_{v2} = 0,4 * 2,60 * 25$$

$$R_{v3} = (b-a) * (h-a) * 19$$

$$R_{v3} = (2,60-0,4) * (h-0,4) * 19$$

$$R_{v3} = 2,20 * 5,6 * 19$$

$$R_{v3} = 234,08 \text{ kN/m}^3$$

### d=1,25m e x=2,00m

Verificação da estabilidade do muro:

<u>Tombamento</u>

$$F_{Tom} = \frac{R_v * d}{R_h * \chi} \to F_{Tom} = \frac{316,08*1,25}{93,89*2} \to F_{Tom} = \frac{395,10}{187,78}$$
$$F_{Tom} = 2,11 > 2 \quad OK!$$

<u>Deslizamento</u>

$$F_{Desl} = \frac{R_{v} * tag\phi}{R_{h}} \rightarrow F_{Desl} = \frac{316,08 * Tag 32^{\circ}}{93,89}$$
$$F_{Desl} = \frac{197,51}{93,89}$$
$$F_{Desl} = 2,10 > 2 \quad OK!$$

Com os resultados obtidos pode-se concluir que ambos os muros possuem adequado fator de segurança, acima de 2, todavia o muro projetado segundo a teoria de Rankine deve ter a base de 2,8m e para a de Coulomb de 2,6m, isso representa uma redução de 7,7%.

Com os dados obtidos através dos cálculos foi possível determinar a quantidade de concreto necessária para se construir um muro segundo as duas teorias. Para a teoria de Rankine o volume de concreto necessário para construir um muro de comprimento L=1m,  $b=2,8m e h=6m é V=3,36m^3$ , para a teoria de Coulomb o volume de concreto necessário para construir um muro de mesmo comprimento e altura, porém com  $b=2,6m é V=3,28m^3$ . Com isso pode-se dizer que houve uma redução de 2,44% em volume de concreto de uma teoria

para outra. Percebe-se ainda que utilizando o ângulo de atrito solo/estrutura nos cálculos, é possível determinar um muro com uma base menor e com isso reduzindo o consumo de concreto em apenas 2,44%.

Foi dimensionado um muro utilizando os parâmetros para o solo de Ijuí na energia intermediária, sendo calculados os novos tamanhos do muro. Os cálculos realizados são os mesmos citados anteriormente para cada teoria, mudando apenas os valores de  $\phi$ =32,48°,  $\delta$ =11,23° e  $\gamma_n$ =18,98kN/m<sup>3</sup>. Os resultados obtidos são:

a) para a teoria de Rankine E = 102,91kN/m  $F_{Tom}=2,07>2$  OK!  $F_{Desl}=2,03>2$  OK!

b) para a teoria de Coulomb E=95,02kN/m F<sub>Tom</sub>=2,08>2 OK! F<sub>Desl</sub>=2,14>2 OK!

Com os resultados obtidos nota-se que ambos os muros possuem adequado fator de segurança, acima de 2, todavia o muro projetado segundo a teoria de Rankine deve ter a base de 2,7m e para a de Coulomb de 2,6m. O volume de concreto necessário para construir o muro segundo Rankine é de V=3,32 m<sup>3</sup>, e para a teoria de Coulomb é V=3,28 m<sup>3</sup>. Possuindo um redução de 1,22% em volume de concreto de uma teoria para a outra, ressaltando que os valores obtidos são para um paramento liso, ou seja, considerando o uso de fôrmas para a construção do muro. Se utilizar um muro com chapisco essa redução pode vir a aumentar.

Chegando na conclusão que utilizando o ângulo de atrito solo/estrutura nos cálculos, é possível determinar um muro com uma base menor e com isso reduzindo o consumo de concreto em 1,22%. Para obras de grande porte é viável a utilização do coeficiente de atrito solo/muro, sendo irrelevante para obras de pequeno porte, devido ao pequeno índice de redução no concreto.

### 6 CONSIDERAÇÕES FINAIS

### 6.1 Conclusão

Considerando o estudo realizado para o desenvolvimento desta pesquisa, cujo os objetivos era estudar a importância do atrito solo/estrutura no cálculo de empuxo para o caso de solo residual de basalto encontrado na cidade de Ijuí, visando o seu emprego em obras de engenharia civil, permitiram-se chegar às seguintes conclusões:

- a) Comportamento mecânico do solo
  - ✓ Com os resultados obtidos nos ensaios de cisalhamento direto, notou-se que para o caso grão/superfície o solo obteve comportamento de argila normalmente adensada para a energia normal e intermediária ( $\sigma_n$ =200kPa) e argila pré-adensada para a energia intermediária ( $\sigma_n$ =30,60,100 kPa) e para a energia modificada.

b) Quanto à resistência ao cisalhamento; ângulo de atrito e coesão para diferentes deslocamentos

- ✓ Para a energia normal de compactação, o valor de ângulo de atrito para diferentes deslocamentos, obteve valores crescentes nos quatro primeiros deslocamentos, vindo a decrescer nos dois últimos deslocamentos, obtendo valor máximo de 19,59° e mínimo de 13,47°. A coesão também obteve valores variando conforme ia aumentando o deslocamento, apresentando valor máximo de 15,30kPa e mínimo de 13,27kPa.
- ✓ A energia intermediária de compactação, obteve valores crescentes de ângulo de atrito conforme aumentava o seu deslocamento, obtendo valor máximo de 13,88° e mínimo de 8,83°. Já a coesão obteve valores variando com o aumento do deslocamento, apresentando valor máximo de 25,29kPa e mínimo de 15,23kPa.

- Para a energia modificada de compactação, os valores de ângulo de atrito encontrados variaram com o aumento de deslocamento, obtendo valor máximo de 11,16° e mínimo de 10,00°. A coesão também variou conforme se aumentava o deslocamento, apresentando valor máximo de 22,31kPa e mínimo de 9,01kPa.
- c) Quanto à resistência ao cisalhamento; ângulo de atrito e coesão de pico
  - ✓ Quanto aos resultados obtidos para a envoltória de resistência de pico, os valores encontrados para ângulo de atrito solo/superfície são: 18,10°, 11,23°, 12,41° para a energia de compactação normal, intermediária e modificada respectivamente. Para a coesão os resultados obtidos são: 13,63kPa, 19,65kPa e 11,05kPa para as energias de compactação.
- d) Quanto à análise paramétrica e pré-dimensionamento
  - Através dos resultados obtidos, notou-se que para ambas teorias de Rankine e Coulomb, a altura (h) apresenta maior influência no valor de empuxo seguido de φ.
  - Ao comparar as duas teorias, notou-se que ao aumentar o valor de ângulo de atrito (φ), a diferença entre as teorias tornando a consideração de atrito solo/muro mais relevante quando os valores de φ são menores. Nota-se também que a diferença é maior para altura maiores.
  - Quanto à segurança ambos os muros calculados pelas as duas teorias obtiveram adequado fator de segurança, acima de dois, contudo o muro projetado segundo a teoria de Rankine deve apresentar uma base maior se comparado com o muro projetado segundo Coulomb.
  - ✓ Quanto à economia, notou-se que o muro projetado utilizando coeficiente de atrito solo/superfície (δ) apresenta um menor consumo de concreto, para o

muro calculado neste trabalho, a redução foi de apenas 2,44%, sendo irrelevante a utilização do coeficiente de atrito para pequenas obras.

### 6.2 Sugestões para trabalhos futuros

A seguir são apresentadas algumas sugestões para dar continuidade a esta pesquisa.

\* Determinar os parâmetros de resistência ao cisalhamento (ângulo de atrito e coesão), para solo arenoso nas energias normal, intermediária e modificada, e analisar numericamente os parâmetros medidos;

\* Determinar os parâmetros de resistência ao cisalhamento (ângulo de atrito e coesão), para solo pedregulhoso nas energias normal, intermediária e modificada, e analisar numericamente os parâmetros medidos.

\* Determinar os parâmetros de resistência ao cisalhamento (ângulo de atrito e coesão), para solo/estrutura com chapisco nas energias normal, intermediária e modificada, e analisar numericamente os parâmetros medidos.

\* Determinar os atritos grão/superfície em estruturas de contenção utilizando tijolos maciços, pedras e outros materiais de engenharia.

\* Modelar em elementos finitos o comportamento de uma estrutura de contenção.

\* Instrumentar uma estrutura de contenção.

# REFERÊNCIAS

BERNARDI, Juarez. Caracterização de jazidas de solo residual de basalto visando seu emprego em barragens de terra. Trabalho de conclusão de curso, Universidade Regional do Noroeste do Estado do Rio Grande do Sul–UNIJUÍ. Ijuí, 2006.

BONAFÉ, Leandro. Estudo da Resistência de um solo residual de basalto estabilizado e reforçado. Trabalho de conclusão de curso, Universidade Regional do Noroeste do Estado do Rio Grande do Sul–UNIJUÍ. Ijuí, 2004.

CAPUTO,1988 a, Homero Pinto. **Mecânica dos solos e suas aplicações**. Fundamentos. 6° edição, Rio de Janeiro: Livros Técnicos e Científicos. Volume 1, 1988.

CAPUTO, 1988 b, Homero Pinto. **Mecânica dos solos e suas aplicações**. Fundamentos. 6º edição, Rio de Janeiro: Livros Técnicos e Científicos. Volume 2, 1988.

CORRÊA, Roseli Maria Stringhini. **Determinação da capacidade de carga de fundações superficiais apoiadas sobre materiais artificialmente cimentados.** Dissertação de Mestrado, Universidade Regional do Noroeste do Estado do Rio Grande do Sul–UNIJUÍ. Ijuí, 2003.

DEPARTAMENTO DE ENGENHARIA CIVIL (DEC/UFRGS). Mecânica dos solos IIempuxos de terra e estrutura de contenção. Apostila UFRGS-escola de engenharia, 1988 80p.

HACHICH, Waldemar et al. **Fundações-teoria e prática**. 2º edição, São Paulo: Pini. ABMS/ABEF, 2000.

LAMBE, T. William; WHITMAN, Robert V. **Mecânica de Suelos.** México: Editorial Limusa S.A., 1974 (em espanhol).

MACHADO, Sandro Lemos, MACHADO, Miriam de Fátima. Mecânica dos solos II: conceitos introdutórios. Salvador, 1997.

MAGALHÃES, Edimarques Pereira., **Comportamento experimental de uma cortina de estaca prancha assente em solo poroso de DF: implicações para o projeto e metodologia de cálculo**. Dissertação de mestrado em geotecnia–Universidade de Brasília. Publicação G. DM-105/2003.

MOLITERNO, Antônio. Caderno de muros de arrimo. São Paulo: Edgar Blücher. 1994

PINTO, Carlos de Sousa. **Curso Básico de Mecânica dos Solos em 16 aulas.** São Paulo. Oficina de Textos, 2002.

SILVA, Hélio da Costa, **Estudo da influência do empuxo lateral causado por grãos nas paredes de grandes silos horizontais.** Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul–Escola de Engenharia, Porto Alegre, 2002.

TÉCHNE Nº 56–a revista do engenheiro civil, **Contenções**. Artigo técnico, São Paulo: editora Pini. Novembro de 2001.

VIECILI, Cristiano., **Determinação dos parâmetros de resistência do solo de Ijuí a partir do ensaio de cisalhamento direto.** Trabalho de conclusão de curso, Universidade Regional do Noroeste do Estado do Rio Grande do Sul–UNIJUÍ. Ijuí, 2003.

WALLAU, Juliano Reis. Avaliação da técnica de estabilização granulométrica como revestimento primário de rodovias não-pavimentadas. Trabalho de conclusão de curso, Universidade Regional do Noroeste do Estado do Rio Grande do Sul–UNIJUÍ. Ijuí, 2004.

ANEXOS

ANEXO I-Ábacos para a metodologia de Caquot-Kerisel (1948)

Coeficiente de empuxo ativo para diferentes configurações de paredes e ângulos do terrapleno. (NAVFAC, 1986). Traduzido para o português por Silva (2002).



Nota: Figura baseada no NAVFAC (1986 b) e Caquot e Kerisel (1948)

Coeficiente de empuxo ativo e passivo com atrito entre a parede e os grãos  $\phi = \phi_w$ , segundo Caquot e Kerisel (1948) com base no (U.S. Army Corps of Engineers, 1989). Traduzido para o português por Silva (2002).



Coeficiente de empuxo ativo e passivo para paredes inclinadas com atrito entre paredes e os grãos segundo Caquot e Kerisel (1948) com base no (U.S. Army Corps of Engineers, 1989). Traduzido para o português por Silva (2002).



ANEXOS II-Planilhas do ensaio de Cisalhamento Direto

| Local: Campus                                             | Amostra: Normal - 30            |                            |        |  |
|-----------------------------------------------------------|---------------------------------|----------------------------|--------|--|
| <b>Data:</b> 04/10/2005 e 05/10/2005 <b>Volume:</b> 75,48 |                                 |                            |        |  |
| Profundidade retirada da amostra                          | (m):                            | h:                         | 1,405  |  |
| Carga normal (kgf): 30,6                                  | Pressão ve                      | ertical (kPa):             | 30     |  |
| P. vazador + amostra (g):                                 | P. vazador:                     | P. amostra (g):            | 139,1  |  |
| Velocidade do ensaio (mm/min):                            | 0,031                           | γd (kN/m³):                | 13,963 |  |
| Compr./Larg./Altura da amostra (ci                        | <b>m):</b> 10,1 x 10,1 x 4,10cm | γn (kN/m³):                | 18,429 |  |
|                                                           |                                 | γd <sub>máx</sub> (kN/m³): | 13,930 |  |
|                                                           |                                 | GC(%):                     | 100    |  |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |    |  |
|----------------------------|-------|--------|---------------|----|--|
| Nº da cápsula:             | 17    | 4      | 0             | 0  |  |
| Peso da cápsula (g):       | 13,42 | 10,77  | 0             | 0  |  |
| Cáp. + solo úmido (g):     | 37,60 | 33,17  | 0             | 0  |  |
| Cáp. + solo seco (g):      | 31,51 | 27,96  | 0             | 0  |  |
| Teor de umidade médio (%): | 31,99 |        | 0,            | 00 |  |

| Leitura no aparelho |     |      | DADOS TRABALHADOS |         |            |            |              |
|---------------------|-----|------|-------------------|---------|------------|------------|--------------|
| Dh                  | Dv  | Anel | Dh (mm)           | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                 | 200 | 0,76 | 0,000             | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                 | 199 | 1,01 | 0,200             | -0,010  | 22,8024    | 101,8080   | 22,3975      |
| 640                 | 197 | 1,06 | 0,400             | -0,030  | 24,1095    | 101,6060   | 23,7284      |
| 660                 | 196 | 1,09 | 0,600             | -0,040  | 24,8938    | 101,4040   | 24,5491      |
| 680                 | 196 | 1,14 | 0,800             | -0,040  | 26,2009    | 101,2020   | 25,8897      |
| 700                 | 196 | 1,10 | 1,000             | -0,040  | 25,1552    | 101,0000   | 24,9061      |
| 720                 | 196 | 1,03 | 1,200             | -0,040  | 23,3253    | 100,7980   | 23,1406      |
| 740                 | 196 | 1,05 | 1,400             | -0,040  | 23,8481    | 100,5960   | 23,7068      |
| 760                 | 196 | 1,00 | 1,600             | -0,040  | 22,5410    | 100,3940   | 22,4525      |
| 780                 | 196 | 1,00 | 1,800             | -0,040  | 22,5410    | 100,1920   | 22,4978      |
| 800                 | 196 | 1,00 | 2,000             | -0,040  | 22,5410    | 99,9900    | 22,5433      |
| 820                 | 196 | 0,99 | 2,200             | -0,040  | 22,2796    | 99,7880    | 22,3269      |
| 840                 | 196 | 0,96 | 2,400             | -0,040  | 21,4953    | 99,5860    | 21,5847      |
| 860                 | 196 | 0,97 | 2,600             | -0,040  | 21,7567    | 99,3840    | 21,8916      |
| 880                 | 196 | 0,97 | 2,800             | -0,040  | 21,7567    | 99,1820    | 21,9362      |
| 900                 | 196 | 0,96 | 3,000             | -0,040  | 21,4953    | 98,9800    | 21,7168      |
| 920                 | 196 | 0,96 | 3,200             | -0,040  | 21,4953    | 98,7780    | 21,7612      |
| 940                 | 196 | 0,95 | 3,400             | -0,040  | 21,2339    | 98,5760    | 21,5406      |
| 960                 | 196 | 0,97 | 3,600             | -0,040  | 21,7567    | 98,3740    | 22,1164      |
| 980                 | 197 | 0,99 | 3,800             | -0,030  | 22,2796    | 98,1720    | 22,6944      |
| 1000                | 197 | 0,95 | 4,000             | -0,030  | 21,2339    | 97,9700    | 21,6739      |

| 1000 | 4.0- | 4 9 9 | 1     |        |         |         |         |
|------|------|-------|-------|--------|---------|---------|---------|
| 1020 | 197  | 1,02  | 4,200 | -0,030 | 23,0638 | 97,7680 | 23,5904 |
| 1040 | 197  | 0,98  | 4,400 | -0,030 | 22,0182 | 97,5660 | 22,5675 |
| 1060 | 197  | 0,90  | 4,600 | -0,030 | 19,9268 | 97,3640 | 20,4663 |
| 1080 | 197  | 0,86  | 4,800 | -0,030 | 18,8811 | 97,1620 | 19,4326 |
| 1100 | 196  | 0,88  | 5,000 | -0,040 | 19,4040 | 96,9600 | 20,0123 |
| 1120 | 196  | 0,88  | 5,200 | -0,040 | 19,4040 | 96,7580 | 20,0541 |
| 1140 | 196  | 0,87  | 5,400 | -0,040 | 19,1425 | 96,5560 | 19,8253 |
| 1160 | 196  | 0,86  | 5,600 | -0,040 | 18,8811 | 96,3540 | 19,5956 |
| 1180 | 196  | 0,85  | 5,800 | -0,040 | 18,6197 | 96,1520 | 19,3649 |
| 1200 | 196  | 0,86  | 6,000 | -0,040 | 18,8811 | 95,9500 | 19,6781 |
| 1220 | 196  | 0,88  | 6,200 | -0,040 | 19,4040 | 95,7480 | 20,2657 |
| 1240 | 196  | 0,88  | 6,400 | -0,040 | 19,4040 | 95,5460 | 20,3085 |
| 1260 | 196  | 0,90  | 6,600 | -0,040 | 19,9268 | 95,3440 | 20,8999 |
| 1280 | 196  | 0,91  | 6,800 | -0,040 | 20,1882 | 95,1420 | 21,2190 |
| 1300 | 196  | 0,92  | 7,000 | -0,040 | 20,4496 | 94,9400 | 21,5395 |
| 1320 | 196  | 0,87  | 7,200 | -0,040 | 19,1425 | 94,7380 | 20,2058 |
| 1340 | 196  | 0,85  | 7,400 | -0,040 | 18,6197 | 94,5360 | 19,6959 |
| 1360 | 196  | 0,81  | 7,600 | -0,040 | 17,5740 | 94,3340 | 18,6296 |
| 1380 | 196  | 0,81  | 7,800 | -0,040 | 17,5740 | 94,1320 | 18,6695 |
| 1400 | 196  | 0,82  | 8,000 | -0,040 | 17,8354 | 93,9300 | 18,9880 |
| 1420 | 196  | 0,82  | 8,200 | -0,040 | 17,8354 | 93,7280 | 19,0289 |
| 1440 | 196  | 0,81  | 8,400 | -0,040 | 17,5740 | 93,5260 | 18,7905 |
| 1460 | 196  | 0,83  | 8,600 | -0,040 | 18,0969 | 93,3240 | 19,3914 |
| 1480 | 196  | 0,84  | 8,800 | -0,040 | 18,3583 | 93,1220 | 19,7142 |
| 1500 | 196  | 0,86  | 9,000 | -0,040 | 18,8811 | 92,9200 | 20,3198 |
| 1520 | 196  | 0,84  | 9,200 | -0,040 | 18,3583 | 92,7180 | 19,8001 |

| Local: Campus                     | Amostra: Normal 60              |                            |        |
|-----------------------------------|---------------------------------|----------------------------|--------|
| Data: 05/10/2005 e 06/10/2005     | Volume: 75,48                   |                            |        |
| Profundidade retirada da amostra  | (m):                            | h:                         | 1,095  |
| Carga normal (kgf): 61,2          |                                 | Pressão vertical (kPa):    | 60     |
| P. vazador + amostra (g):         | P. vazador:                     | P. amostra (g):            | 139,1  |
| Velocidade do ensaio (mm/min):    | 0,031                           | γd (kN/m³):                | 13,794 |
| Compr./Larg./Altura da amostra (c | <b>m):</b> 10,1 x 10,1 x 4,10cm | γn (kN/m³):                | 18,429 |
|                                   |                                 | γd <sub>máx</sub> (kN/m³): | 13,930 |
|                                   |                                 | GC(%):                     | 99     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------|--------|---------------|---|--|
| № da cápsula:              | 5     | 18     | 0             | 0 |  |
| Peso da cápsula (g):       | 12,10 | 13,69  | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 30,91 | 44,18  | 0             | 0 |  |
| Cáp. + solo seco (g):      | 25,92 | 36,95  | 0             | 0 |  |
| Teor de umidade médio (%): | 33    | 33,60  |               | ) |  |

| Leitura no aparelho |     | DADOS TRABALHADOS |         |         |            |            |              |
|---------------------|-----|-------------------|---------|---------|------------|------------|--------------|
| Dh                  | Dv  | Anel              | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                 | 200 | 0,26              | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                 | 197 | 0,84              | 0,200   | -0,030  | 18,3583    | 101,8080   | 18,0323      |
| 640                 | 194 | 1,06              | 0,400   | -0,060  | 24,1095    | 101,6060   | 23,7284      |
| 660                 | 192 | 1,20              | 0,600   | -0,080  | 27,7694    | 101,4040   | 27,3849      |
| 680                 | 190 | 1,31              | 0,800   | -0,100  | 30,6450    | 101,2020   | 30,2810      |
| 700                 | 189 | 1,38              | 1,000   | -0,110  | 32,4750    | 101,0000   | 32,1534      |
| 720                 | 189 | 1,42              | 1,200   | -0,110  | 33,5206    | 100,7980   | 33,2553      |
| 740                 | 188 | 1,45              | 1,400   | -0,120  | 34,3049    | 100,5960   | 34,1017      |
| 760                 | 188 | 1,47              | 1,600   | -0,120  | 34,8277    | 100,3940   | 34,6911      |
| 780                 | 187 | 1,49              | 1,800   | -0,130  | 35,3506    | 100,1920   | 35,2828      |
| 800                 | 187 | 1,52              | 2,000   | -0,130  | 36,1348    | 99,9900    | 36,1385      |
| 820                 | 187 | 1,55              | 2,200   | -0,130  | 36,9191    | 99,7880    | 36,9975      |
| 840                 | 186 | 1,57              | 2,400   | -0,140  | 37,4419    | 99,5860    | 37,5976      |
| 860                 | 185 | 1,64              | 2,600   | -0,150  | 39,2719    | 99,3840    | 39,5153      |
| 880                 | 185 | 1,59              | 2,800   | -0,150  | 37,9648    | 99,1820    | 38,2779      |
| 900                 | 186 | 1,64              | 3,000   | -0,140  | 39,2719    | 98,9800    | 39,6766      |
| 920                 | 186 | 1,59              | 3,200   | -0,140  | 37,9648    | 98,7780    | 38,4344      |
| 940                 | 186 | 1,60              | 3,400   | -0,140  | 38,2262    | 98,5760    | 38,7784      |
| 960                 | 186 | 1,59              | 3,600   | -0,140  | 37,9648    | 98,3740    | 38,5923      |
| 980                 | 186 | 1,61              | 3,800   | -0,140  | 38,4876    | 98,1720    | 39,2043      |
| 1000                | 186 | 1,53              | 4,000   | -0,140  | 36,3963    | 97,9700    | 37,1504      |

| 1020 | 186 | 1,57 | 4,200  | -0,140 | 37,4419 | 97,7680 | 38,2967 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1040 | 186 | 1,54 | 4,400  | -0,140 | 36,6577 | 97,5660 | 37,5722 |
| 1060 | 187 | 1,51 | 4,600  | -0,130 | 35,8734 | 97,3640 | 36,8446 |
| 1080 | 187 | 1,57 | 4,800  | -0,130 | 37,4419 | 97,1620 | 38,5356 |
| 1100 | 187 | 1,55 | 5,000  | -0,130 | 36,9191 | 96,9600 | 38,0766 |
| 1120 | 187 | 1,49 | 5,200  | -0,130 | 35,3506 | 96,7580 | 36,5350 |
| 1140 | 187 | 1,44 | 5,400  | -0,130 | 34,0435 | 96,5560 | 35,2578 |
| 1160 | 187 | 1,46 | 5,600  | -0,130 | 34,5663 | 96,3540 | 35,8743 |
| 1180 | 187 | 1,47 | 5,800  | -0,130 | 34,8277 | 96,1520 | 36,2215 |
| 1200 | 187 | 1,52 | 6,000  | -0,130 | 36,1348 | 95,9500 | 37,6601 |
| 1220 | 187 | 1,63 | 6,200  | -0,130 | 39,0105 | 95,7480 | 40,7428 |
| 1240 | 188 | 1,63 | 6,400  | -0,120 | 39,0105 | 95,5460 | 40,8290 |
| 1260 | 188 | 1,57 | 6,600  | -0,120 | 37,4419 | 95,3440 | 39,2704 |
| 1280 | 188 | 1,51 | 6,800  | -0,120 | 35,8734 | 95,1420 | 37,7051 |
| 1300 | 188 | 1,46 | 7,000  | -0,120 | 34,5663 | 94,9400 | 36,4086 |
| 1320 | 187 | 1,37 | 7,200  | -0,130 | 32,2135 | 94,7380 | 34,0028 |
| 1340 | 188 | 1,33 | 7,400  | -0,120 | 31,1679 | 94,5360 | 32,9693 |
| 1360 | 188 | 1,33 | 7,600  | -0,120 | 31,1679 | 94,3340 | 33,0399 |
| 1380 | 188 | 1,37 | 7,800  | -0,120 | 32,2135 | 94,1320 | 34,2217 |
| 1400 | 188 | 1,37 | 8,000  | -0,120 | 32,2135 | 93,9300 | 34,2953 |
| 1420 | 187 | 1,47 | 8,200  | -0,130 | 34,8277 | 93,7280 | 37,1583 |
| 1440 | 187 | 1,51 | 8,400  | -0,130 | 35,8734 | 93,5260 | 38,3566 |
| 1460 | 187 | 1,36 | 8,600  | -0,130 | 31,9521 | 93,3240 | 34,2378 |
| 1480 | 187 | 1,40 | 8,800  | -0,130 | 32,9978 | 93,1220 | 35,4350 |
| 1500 | 187 | 1,42 | 9,000  | -0,130 | 33,5206 | 92,9200 | 36,0747 |
| 1520 | 187 | 1,35 | 9,200  | -0,130 | 31,6907 | 92,7180 | 34,1797 |
| 1540 | 186 | 1,34 | 9,400  | -0,140 | 31,4293 | 92,5160 | 33,9717 |
| 1560 | 186 | 1,34 | 9,600  | -0,140 | 31,4293 | 92,3140 | 34,0461 |
| 1580 | 186 | 1,35 | 9,800  | -0,140 | 31,6907 | 92,1120 | 34,4045 |
| 1600 | 186 | 1,35 | 10,000 | -0,140 | 31,6907 | 91,9100 | 34,4801 |

| Local: Campus                    | Amostra: Normal 100             |                            |        |
|----------------------------------|---------------------------------|----------------------------|--------|
| Data: 06/10/2005 e 07/10/2005    | Volume: 75,48                   |                            |        |
| Profundidade retirada da amostra | u (m):                          | h:                         | -0,707 |
| Carga normal (kgf): 102          | F                               | Pressão vertical (kPa):    | 100    |
| P. vazador + amostra (g):        | P. vazador:                     | P. amostra (g):            | 139,1  |
| Velocidade do ensaio (mm/min):   | 0,031                           | γd (kN/m³):                | 14,016 |
| Compr./Larg./Altura da amostra ( | <b>cm):</b> 10,1 x 10,1 x 4,10c | m γ <b>n (kN/m³):</b>      | 18,429 |
|                                  |                                 | γd <sub>máx</sub> (kN/m³): | 13,930 |
|                                  |                                 | GC(%):                     | 101    |

Condições do ensaio: - Natural (

) - Inundado( X )- Residual( )

| <br>• | , |
|-------|---|
|       |   |
|       |   |

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------|--------|---------------|---|--|
| № da cápsula:              | 7     | 10     | 0             | 0 |  |
| Peso da cápsula (g):       | 14,47 | 15,44  | 4 0 0         |   |  |
| Cáp. + solo úmido (g):     | 36,10 | 40,41  | 0             | 0 |  |
| Cáp. + solo seco (g):      | 30,29 | 35,22  | 0             | 0 |  |
| Teor de umidade médio (%): | 31    | ,48    | 0,00          |   |  |

| Leitura no aparelho |     | DADOS TRABALHADOS |         |         |            |            |              |
|---------------------|-----|-------------------|---------|---------|------------|------------|--------------|
| Dh                  | Dv  | Anel              | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                 | 100 | 0,50              | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                 | 99  | 1,43              | 0,200   | -0,010  | 33,7821    | 101,8080   | 33,1821      |
| 640                 | 98  | 1,58              | 0,400   | -0,020  | 37,7034    | 101,6060   | 37,1074      |
| 660                 | 97  | 1,65              | 0,600   | -0,030  | 39,5333    | 101,4040   | 38,9859      |
| 680                 | 96  | 1,74              | 0,800   | -0,040  | 41,8861    | 101,2020   | 41,3886      |
| 700                 | 96  | 1,83              | 1,000   | -0,040  | 44,2389    | 101,0000   | 43,8009      |
| 720                 | 96  | 1,82              | 1,200   | -0,040  | 43,9774    | 100,7980   | 43,6293      |
| 740                 | 96  | 1,98              | 1,400   | -0,040  | 48,1602    | 100,5960   | 47,8748      |
| 760                 | 95  | 2,05              | 1,600   | -0,050  | 49,9901    | 100,3940   | 49,7939      |
| 780                 | 95  | 1,94              | 1,800   | -0,050  | 47,1145    | 100,1920   | 47,0242      |
| 800                 | 95  | 1,99              | 2,000   | -0,050  | 48,4216    | 99,9900    | 48,4264      |
| 820                 | 95  | 1,90              | 2,200   | -0,050  | 46,0688    | 99,7880    | 46,1667      |
| 840                 | 95  | 1,86              | 2,400   | -0,050  | 45,0231    | 99,5860    | 45,2103      |
| 860                 | 95  | 1,81              | 2,600   | -0,050  | 43,7160    | 99,3840    | 43,9870      |
| 880                 | 95  | 1,83              | 2,800   | -0,050  | 44,2389    | 99,1820    | 44,6037      |
| 900                 | 95  | 1,84              | 3,000   | -0,050  | 44,5003    | 98,9800    | 44,9589      |
| 920                 | 95  | 1,80              | 3,200   | -0,050  | 43,4546    | 98,7780    | 43,9922      |
| 940                 | 95  | 1,81              | 3,400   | -0,050  | 43,7160    | 98,5760    | 44,3475      |
| 960                 | 95  | 1,85              | 3,600   | -0,050  | 44,7617    | 98,3740    | 45,5016      |
| 980                 | 95  | 1,88              | 3,800   | -0,050  | 45,5460    | 98,1720    | 46,3940      |

| 1000 | 95 | 1,88 | 4,000  | -0,050 | 45,5460 | 97,9700 | 46,4897 |
|------|----|------|--------|--------|---------|---------|---------|
| 1020 | 95 | 1,93 | 4,200  | -0,050 | 46,8531 | 97,7680 | 47,9227 |
| 1040 | 95 | 1,92 | 4,400  | -0,050 | 46,5916 | 97,5660 | 47,7540 |
| 1060 | 96 | 1,87 | 4,600  | -0,040 | 45,2845 | 97,3640 | 46,5106 |
| 1080 | 96 | 1,84 | 4,800  | -0,040 | 44,5003 | 97,1620 | 45,8001 |
| 1100 | 96 | 1,86 | 5,000  | -0,040 | 45,0231 | 96,9600 | 46,4347 |
| 1120 | 96 | 1,82 | 5,200  | -0,040 | 43,9774 | 96,7580 | 45,4510 |
| 1140 | 96 | 1,76 | 5,400  | -0,040 | 42,4089 | 96,5560 | 43,9216 |
| 1160 | 96 | 1,81 | 5,600  | -0,040 | 43,7160 | 96,3540 | 45,3702 |
| 1180 | 96 | 1,78 | 5,800  | -0,040 | 42,9318 | 96,1520 | 44,6499 |
| 1200 | 97 | 1,78 | 6,000  | -0,030 | 42,9318 | 95,9500 | 44,7439 |
| 1220 | 97 | 1,80 | 6,200  | -0,030 | 43,4546 | 95,7480 | 45,3843 |
| 1240 | 97 | 1,85 | 6,400  | -0,030 | 44,7617 | 95,5460 | 46,8483 |
| 1260 | 97 | 1,85 | 6,600  | -0,030 | 44,7617 | 95,3440 | 46,9476 |
| 1280 | 97 | 1,82 | 6,800  | -0,030 | 43,9774 | 95,1420 | 46,2230 |
| 1300 | 97 | 1,80 | 7,000  | -0,030 | 43,4546 | 94,9400 | 45,7706 |
| 1320 | 97 | 1,77 | 7,200  | -0,030 | 42,6703 | 94,7380 | 45,0404 |
| 1340 | 97 | 1,82 | 7,400  | -0,030 | 43,9774 | 94,5360 | 46,5193 |
| 1360 | 97 | 1,82 | 7,600  | -0,030 | 43,9774 | 94,3340 | 46,6189 |
| 1380 | 97 | 1,80 | 7,800  | -0,030 | 43,4546 | 94,1320 | 46,1635 |
| 1400 | 97 | 1,81 | 8,000  | -0,030 | 43,7160 | 93,9300 | 46,5411 |
| 1420 | 97 | 1,84 | 8,200  | -0,030 | 44,5003 | 93,7280 | 47,4781 |
| 1440 | 97 | 1,85 | 8,400  | -0,030 | 44,7617 | 93,5260 | 47,8602 |
| 1460 | 97 | 1,82 | 8,600  | -0,030 | 43,9774 | 93,3240 | 47,1234 |
| 1480 | 97 | 1,82 | 8,800  | -0,030 | 43,9774 | 93,1220 | 47,2256 |
| 1500 | 97 | 1,80 | 9,000  | -0,030 | 43,4546 | 92,9200 | 46,7656 |
| 1520 | 97 | 1,77 | 9,200  | -0,030 | 42,6703 | 92,7180 | 46,0216 |
| 1540 | 97 | 1,81 | 9,400  | -0,030 | 43,7160 | 92,5160 | 47,2524 |
| 1560 | 97 | 1,77 | 9,600  | -0,030 | 42,6703 | 92,3140 | 46,2230 |
| 1580 | 97 | 1,75 | 9,800  | -0,030 | 42,1475 | 92,1120 | 45,7568 |
| 1600 | 97 | 1,75 | 10,000 | -0,030 | 42,1475 | 91,9100 | 45,8574 |

| Local: Campus                      | Amostra: Normal 200             |                            |        |
|------------------------------------|---------------------------------|----------------------------|--------|
| Data: 07/10/2005 e 08/10/2005      | Volume: 75,48                   |                            |        |
| Profundidade retirada da amostra ( | (m):                            | h:                         | 0,521  |
| Carga normal (kgf): 204            |                                 | Pressão vertical (kPa):    | 200    |
| P. vazador + amostra (g):          | P. vazador:                     | P. amostra (g):            | 139,1  |
| Velocidade do ensaio (mm/min):     | 0,031                           | γd (kN/m³):                | 13,719 |
| Compr./Larg./Altura da amostra (cr | <b>n):</b> 10,1 x 10,1 x 4,10cm | γn (kN/m³):                | 18,429 |
|                                    |                                 | γd <sub>máx</sub> (kN/m³): | 13,930 |
|                                    |                                 | GC(%):                     | 98     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------|--------|---------------|---|--|
| № da cápsula:              | 6     | 2      | 0             | 0 |  |
| Peso da cápsula (g):       | 12,03 | 10,37  | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 40,43 | 46,44  | 0             | 0 |  |
| Cáp. + solo seco (g):      | 32,62 | 37,96  | 0             | 0 |  |
| Teor de umidade médio (%): | 34    | ,33    | 0,00          |   |  |

| Leitura no aparelho |     |      | DADOS TRABALHADOS |         |            |            |              |
|---------------------|-----|------|-------------------|---------|------------|------------|--------------|
| Dh                  | Dv  | Anel | Dh (mm)           | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                 | 200 | 1,33 | 0,000             | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                 | 198 | 2,06 | 0,200             | -0,020  | 50,2515    | 101,8080   | 49,3591      |
| 640                 | 195 | 2,40 | 0,400             | -0,050  | 59,1398    | 101,6060   | 58,2050      |
| 660                 | 193 | 2,61 | 0,600             | -0,070  | 64,6296    | 101,4040   | 63,7348      |
| 680                 | 192 | 2,87 | 0,800             | -0,080  | 71,4265    | 101,2020   | 70,5782      |
| 700                 | 191 | 3,03 | 1,000             | -0,090  | 75,6093    | 101,0000   | 74,8607      |
| 720                 | 191 | 3,25 | 1,200             | -0,090  | 81,3605    | 100,7980   | 80,7164      |
| 740                 | 190 | 3,35 | 1,400             | -0,100  | 83,9747    | 100,5960   | 83,4772      |
| 760                 | 190 | 3,24 | 1,600             | -0,100  | 81,0991    | 100,3940   | 80,7808      |
| 780                 | 190 | 3,23 | 1,800             | -0,100  | 80,8377    | 100,1920   | 80,6827      |
| 800                 | 189 | 3,34 | 2,000             | -0,110  | 83,7133    | 99,9900    | 83,7217      |
| 820                 | 189 | 3,39 | 2,200             | -0,110  | 85,0204    | 99,7880    | 85,2010      |
| 840                 | 189 | 3,33 | 2,400             | -0,110  | 83,4519    | 99,5860    | 83,7988      |
| 860                 | 189 | 3,18 | 2,600             | -0,110  | 79,5306    | 99,3840    | 80,0235      |
| 880                 | 189 | 3,21 | 2,800             | -0,110  | 80,3148    | 99,1820    | 80,9772      |
| 900                 | 189 | 3,19 | 3,000             | -0,110  | 79,7920    | 98,9800    | 80,6142      |
| 920                 | 189 | 3,21 | 3,200             | -0,110  | 80,3148    | 98,7780    | 81,3084      |
| 940                 | 189 | 3,22 | 3,400             | -0,110  | 80,5762    | 98,5760    | 81,7402      |
| 960                 | 189 | 3,20 | 3,600             | -0,110  | 80,0534    | 98,3740    | 81,3766      |
| 980                 | 189 | 3,18 | 3,800             | -0,110  | 79,5306    | 98,1720    | 81,0114      |
| 1000                | 189 | 3,14 | 4,000             | -0,110  | 78,4849    | 97,9700    | 80,1111      |

| 1    |     |      |        |        |         |         |         |
|------|-----|------|--------|--------|---------|---------|---------|
| 1020 | 189 | 3,10 | 4,200  | -0,110 | 77,4392 | 97,7680 | 79,2071 |
| 1040 | 190 | 3,13 | 4,400  | -0,100 | 78,2235 | 97,5660 | 80,1749 |
| 1060 | 190 | 3,16 | 4,600  | -0,100 | 79,0077 | 97,3640 | 81,1467 |
| 1080 | 190 | 3,17 | 4,800  | -0,100 | 79,2691 | 97,1620 | 81,5845 |
| 1100 | 190 | 3,11 | 5,000  | -0,100 | 77,7006 | 96,9600 | 80,1368 |
| 1120 | 190 | 3,06 | 5,200  | -0,100 | 76,3935 | 96,7580 | 78,9532 |
| 1140 | 190 | 3,05 | 5,400  | -0,100 | 76,1321 | 96,5560 | 78,8476 |
| 1160 | 190 | 2,99 | 5,600  | -0,100 | 74,5636 | 96,3540 | 77,3850 |
| 1180 | 190 | 2,90 | 5,800  | -0,100 | 72,2108 | 96,1520 | 75,1007 |
| 1200 | 190 | 3,00 | 6,000  | -0,100 | 74,8250 | 95,9500 | 77,9833 |
| 1220 | 190 | 2,96 | 6,200  | -0,100 | 73,7793 | 95,7480 | 77,0557 |
| 1240 | 190 | 2,98 | 6,400  | -0,100 | 74,3022 | 95,5460 | 77,7659 |
| 1260 | 190 | 3,03 | 6,600  | -0,100 | 75,6093 | 95,3440 | 79,3015 |
| 1280 | 190 | 3,01 | 6,800  | -0,100 | 75,0864 | 95,1420 | 78,9204 |
| 1300 | 190 | 2,93 | 7,000  | -0,100 | 72,9951 | 94,9400 | 76,8855 |
| 1320 | 190 | 2,93 | 7,200  | -0,100 | 72,9951 | 94,7380 | 77,0494 |
| 1340 | 190 | 2,99 | 7,400  | -0,100 | 74,5636 | 94,5360 | 78,8732 |
| 1360 | 190 | 2,98 | 7,600  | -0,100 | 74,3022 | 94,3340 | 78,7650 |
| 1380 | 190 | 2,98 | 7,800  | -0,100 | 74,3022 | 94,1320 | 78,9340 |
| 1400 | 190 | 2,96 | 8,000  | -0,100 | 73,7793 | 93,9300 | 78,5471 |
| 1420 | 190 | 2,96 | 8,200  | -0,100 | 73,7793 | 93,7280 | 78,7164 |
| 1440 | 190 | 2,97 | 8,400  | -0,100 | 74,0407 | 93,5260 | 79,1659 |
| 1460 | 190 | 2,92 | 8,600  | -0,100 | 72,7336 | 93,3240 | 77,9367 |
| 1480 | 190 | 2,93 | 8,800  | -0,100 | 72,9951 | 93,1220 | 78,3865 |
| 1500 | 190 | 2,92 | 9,000  | -0,100 | 72,7336 | 92,9200 | 78,2755 |
| 1520 | 190 | 2,88 | 9,200  | -0,100 | 71,6880 | 92,7180 | 77,3183 |
| 1540 | 190 | 2,86 | 9,400  | -0,100 | 71,1651 | 92,5160 | 76,9220 |
| 1560 | 190 | 2,85 | 9,600  | -0,100 | 70,9037 | 92,3140 | 76,8071 |
| 1580 | 190 | 2,82 | 9,800  | -0,100 | 70,1194 | 92,1120 | 76,1241 |
| 1600 | 190 | 2,82 | 10,000 | -0,100 | 70,1194 | 91,9100 | 76,2914 |

### ENSAIO DE CISALHAMENTO DIRETO

#### LABORATÓRIO DE MECÂNICA DOS SOLOS - UNIJUÍ/RS

Local: Campus Amostra: Intermediária\_30 **Data:** 08/10/2005 e 09/10/2005 **Volume:** 75,48 Profundidade retirada da amostra (m): h: 1,582 Carga normal (kgf): 30,6 Pressão vertical (kPa): 30 P. vazador + amostra (g): P. vazador: P. amostra (g): 144,53 Velocidade do ensaio (mm/min): 0,031 γd (kN/m³): 14,587 Compr./Larg./Altura da amostra (cm): 10,1 x 10,1 x 4,10cm γn (kN/m³): 19,148 γd<sub>máx</sub>(kN/m<sup>3</sup>): 14,730 99 GC(%):

Condições do ensaio: - Natural (

) - Inundado ( X ) - Residual (

)

| Determinação da umidade:   | ANTES E | ENSAIO | DEPOIS ENSAIO |      |  |
|----------------------------|---------|--------|---------------|------|--|
| Nº da cápsula:             | 7       | 18     | 0             | 0    |  |
| Peso da cápsula (g):       | 14,47   | 13,69  | 0             | 0    |  |
| Cáp. + solo úmido (g):     | 50,79   | 43,33  | 0             | 0    |  |
| Cáp. + solo seco (g):      | 41,85   | 36,51  | 0             | 0    |  |
| Teor de umidade médio (%): | 31,27   |        | 0,            | 0,00 |  |

| Leitu | Leitura no aparelho |      |         | DAD     | OS TRABAL  | HADOS                   |         |
|-------|---------------------|------|---------|---------|------------|-------------------------|---------|
|       | -                   |      |         |         |            |                         | Tensão  |
| Dh    | Dv                  | Anel | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm <sup>2</sup> ) | (kPa)   |
| 600   | 700                 | 0,53 | 0,000   | 0,000   | 0,0000     | 102,0100                | 0,0000  |
| 620   | 694                 | 0,80 | 0,200   | -0,060  | 17,3126    | 101,8080                | 17,0051 |
| 640   | 691                 | 0,87 | 0,400   | -0,090  | 19,1425    | 101,6060                | 18,8400 |
| 660   | 688                 | 0,92 | 0,600   | -0,120  | 20,4496    | 101,4040                | 20,1665 |
| 680   | 685                 | 0,98 | 0,800   | -0,150  | 22,0182    | 101,2020                | 21,7566 |
| 700   | 682                 | 1,08 | 1,000   | -0,180  | 24,6324    | 101,0000                | 24,3885 |
| 720   | 679                 | 1,16 | 1,200   | -0,210  | 26,7237    | 100,7980                | 26,5122 |
| 740   | 677                 | 1,27 | 1,400   | -0,230  | 29,5993    | 100,5960                | 29,4240 |
| 760   | 676                 | 1,27 | 1,600   | -0,240  | 29,5993    | 100,3940                | 29,4832 |
| 780   | 675                 | 1,22 | 1,800   | -0,250  | 28,2922    | 100,1920                | 28,2380 |
| 800   | 673                 | 1,19 | 2,000   | -0,270  | 27,5080    | 99,9900                 | 27,5107 |
| 820   | 672                 | 1,25 | 2,200   | -0,280  | 29,0765    | 99,7880                 | 29,1383 |
| 840   | 671                 | 1,19 | 2,400   | -0,290  | 27,5080    | 99,5860                 | 27,6223 |
| 860   | 670                 | 1,20 | 2,600   | -0,300  | 27,7694    | 99,3840                 | 27,9415 |
| 880   | 669                 | 1,11 | 2,800   | -0,310  | 25,4166    | 99,1820                 | 25,6262 |
| 900   | 669                 | 1,13 | 3,000   | -0,310  | 25,9395    | 98,9800                 | 26,2068 |
| 920   | 669                 | 1,12 | 3,200   | -0,310  | 25,6780    | 98,7780                 | 25,9957 |
| 940   | 668                 | 1,11 | 3,400   | -0,320  | 25,4166    | 98,5760                 | 25,7838 |
| 960   | 668                 | 1,08 | 3,600   | -0,320  | 24,6324    | 98,3740                 | 25,0395 |
| 980   | 668                 | 1,03 | 3,800   | -0,320  | 23,3253    | 98,1720                 | 23,7596 |
| 1000  | 667                 | 0,99 | 4,000   | -0,330  | 22,2796    | 97,9700                 | 22,7412 |
| 1020  | 667                 | 0,98 | 4,200   | -0,330  | 22,0182    | 97,7680                 | 22,5208 |
| 1040  | 666                 | 0,96 | 4,400   | -0,340  | 21,4953    | 97,5660                 | 22,0316 |

| 1060 | 665 | 0,96 | 4,600  | -0,350 | 21,4953 | 97,3640 | 22,0773 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1080 | 665 | 0,98 | 4,800  | -0,350 | 22,0182 | 97,1620 | 22,6613 |
| 1100 | 665 | 1,00 | 5,000  | -0,350 | 22,5410 | 96,9600 | 23,2477 |
| 1120 | 665 | 0,99 | 5,200  | -0,350 | 22,2796 | 96,7580 | 23,0261 |
| 1140 | 665 | 1,01 | 5,400  | -0,350 | 22,8024 | 96,5560 | 23,6157 |
| 1160 | 665 | 1,03 | 5,600  | -0,350 | 23,3253 | 96,3540 | 24,2079 |
| 1180 | 664 | 1,02 | 5,800  | -0,360 | 23,0638 | 96,1520 | 23,9869 |
| 1200 | 664 | 1,00 | 6,000  | -0,360 | 22,5410 | 95,9500 | 23,4924 |
| 1220 | 664 | 1,05 | 6,200  | -0,360 | 23,8481 | 95,7480 | 24,9072 |
| 1240 | 664 | 1,02 | 6,400  | -0,360 | 23,0638 | 95,5460 | 24,1390 |
| 1260 | 663 | 0,98 | 6,600  | -0,370 | 22,0182 | 95,3440 | 23,0934 |
| 1280 | 663 | 1,00 | 6,800  | -0,370 | 22,5410 | 95,1420 | 23,6920 |
| 1300 | 663 | 1,01 | 7,000  | -0,370 | 22,8024 | 94,9400 | 24,0177 |
| 1320 | 663 | 0,98 | 7,200  | -0,370 | 22,0182 | 94,7380 | 23,2411 |
| 1340 | 663 | 0,94 | 7,400  | -0,370 | 20,9725 | 94,5360 | 22,1846 |
| 1360 | 663 | 0,96 | 7,600  | -0,370 | 21,4953 | 94,3340 | 22,7864 |
| 1380 | 663 | 1,01 | 7,800  | -0,370 | 22,8024 | 94,1320 | 24,2239 |
| 1400 | 663 | 1,08 | 8,000  | -0,370 | 24,6324 | 93,9300 | 26,2242 |
| 1420 | 662 | 1,14 | 8,200  | -0,380 | 26,2009 | 93,7280 | 27,9542 |
| 1440 | 662 | 1,11 | 8,400  | -0,380 | 25,4166 | 93,5260 | 27,1760 |
| 1460 | 662 | 1,13 | 8,600  | -0,380 | 25,9395 | 93,3240 | 27,7951 |
| 1480 | 662 | 1,08 | 8,800  | -0,380 | 24,6324 | 93,1220 | 26,4517 |
| 1500 | 661 | 1,06 | 9,000  | -0,390 | 24,1095 | 92,9200 | 25,9465 |
| 1520 | 661 | 1,03 | 9,200  | -0,390 | 23,3253 | 92,7180 | 25,1572 |
| 1540 | 660 | 0,98 | 9,400  | -0,400 | 22,0182 | 92,5160 | 23,7993 |
| 1560 | 660 | 0,94 | 9,600  | -0,400 | 20,9725 | 92,3140 | 22,7186 |
| 1580 | 660 | 0,96 | 9,800  | -0,400 | 21,4953 | 92,1120 | 23,3361 |
| 1600 | 659 | 1,03 | 10,000 | -0,410 | 23,3253 | 91,9100 | 25,3784 |

| Local: Campus                         | Amostra:        | Intermediária | a_60                       |          |
|---------------------------------------|-----------------|---------------|----------------------------|----------|
| Data: 10/10/2005 e 11/10/2005         | Volume:         | 75,48         |                            |          |
| Profundidade retirada da amostra (m): |                 |               | h:                         | -0,557   |
| Carga normal (kgf): 61,2              |                 | Pressão ver   | tical (kPa):               | 60       |
| P. vazador + amostra (g):             | P. vazador:     | I             | P. amostra (g)             | : 144,53 |
| Velocidade do ensaio (mm/min):        | 0,031           | 1             | /d (kN/m³):                | 14,592   |
| Compr./Larg./Altura da amostra (cm):  | 10,1 x 10,1 x 4 | ,10cm         | /n (kN/m³):                | 19,148   |
|                                       |                 | 1             | /d <sub>máx</sub> (kN/m³): | 14,730   |
|                                       |                 |               | GC(%):                     | 99       |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |    |  |
|----------------------------|-------|--------|---------------|----|--|
| Nº da cápsula:             | 11    | 4      | 0             | 0  |  |
| Peso da cápsula (g):       | 15,01 | 10,77  | 0             | 0  |  |
| Cáp. + solo úmido (g):     | 38,70 | 34,2   | 0             | 0  |  |
| Cáp. + solo seco (g):      | 33,35 | 28,35  | 0             | 0  |  |
| Teor de umidade médio (%): | 31,22 |        | 0,            | 00 |  |

| Leitura no aparelho |     |      |         | DAD     | OS TRABAL  | .HADOS     |              |
|---------------------|-----|------|---------|---------|------------|------------|--------------|
| Dh                  | Dv  | Anel | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                 | 900 | 0,40 | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                 | 898 | 0,84 | 0,200   | -0,020  | 18,3583    | 101,8080   | 18,0323      |
| 640                 | 896 | 1,14 | 0,400   | -0,040  | 26,2009    | 101,6060   | 25,7867      |
| 660                 | 895 | 1,31 | 0,600   | -0,050  | 30,6450    | 101,4040   | 30,2207      |
| 680                 | 894 | 1,63 | 0,800   | -0,060  | 39,0105    | 101,2020   | 38,5471      |
| 700                 | 894 | 1,92 | 1,000   | -0,060  | 46,5916    | 101,0000   | 46,1303      |
| 720                 | 894 | 2,04 | 1,200   | -0,060  | 49,7287    | 100,7980   | 49,3350      |
| 740                 | 894 | 1,81 | 1,400   | -0,060  | 43,7160    | 100,5960   | 43,4570      |
| 760                 | 894 | 1,74 | 1,600   | -0,060  | 41,8861    | 100,3940   | 41,7217      |
| 780                 | 894 | 1,61 | 1,800   | -0,060  | 38,4876    | 100,1920   | 38,4139      |
| 800                 | 894 | 1,61 | 2,000   | -0,060  | 38,4876    | 99,9900    | 38,4915      |
| 820                 | 894 | 1,62 | 2,200   | -0,060  | 38,7490    | 99,7880    | 38,8314      |
| 840                 | 894 | 1,59 | 2,400   | -0,060  | 37,9648    | 99,5860    | 38,1226      |
| 860                 | 894 | 1,63 | 2,600   | -0,060  | 39,0105    | 99,3840    | 39,2523      |
| 880                 | 894 | 1,61 | 2,800   | -0,060  | 38,4876    | 99,1820    | 38,8050      |
| 900                 | 894 | 1,63 | 3,000   | -0,060  | 39,0105    | 98,9800    | 39,4125      |
| 920                 | 894 | 1,66 | 3,200   | -0,060  | 39,7947    | 98,7780    | 40,2870      |
| 940                 | 894 | 1,76 | 3,400   | -0,060  | 42,4089    | 98,5760    | 43,0215      |
| 960                 | 894 | 1,65 | 3,600   | -0,060  | 39,5333    | 98,3740    | 40,1867      |
| 980                 | 894 | 1,61 | 3,800   | -0,060  | 38,4876    | 98,1720    | 39,2043      |
| 1000                | 894 | 1,59 | 4,000   | -0,060  | 37,9648    | 97,9700    | 38,7514      |
| 1020                | 893 | 1,52 | 4,200   | -0,070  | 36,1348    | 97,7680    | 36,9598      |
| 1040 | 893 | 1,58 | 4,400  | -0,070 | 37,7034 | 97,5660 | 38,6440 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1060 | 893 | 1,47 | 4,600  | -0,070 | 34,8277 | 97,3640 | 35,7707 |
| 1080 | 893 | 1,49 | 4,800  | -0,070 | 35,3506 | 97,1620 | 36,3831 |
| 1100 | 892 | 1,49 | 5,000  | -0,080 | 35,3506 | 96,9600 | 36,4589 |
| 1120 | 892 | 1,56 | 5,200  | -0,080 | 37,1805 | 96,7580 | 38,4263 |
| 1140 | 892 | 1,55 | 5,400  | -0,080 | 36,9191 | 96,5560 | 38,2359 |
| 1160 | 892 | 1,60 | 5,600  | -0,080 | 38,2262 | 96,3540 | 39,6727 |
| 1180 | 892 | 1,55 | 5,800  | -0,080 | 36,9191 | 96,1520 | 38,3966 |
| 1200 | 892 | 1,46 | 6,000  | -0,080 | 34,5663 | 95,9500 | 36,0253 |
| 1220 | 891 | 1,41 | 6,200  | -0,090 | 33,2592 | 95,7480 | 34,7362 |
| 1240 | 891 | 1,45 | 6,400  | -0,090 | 34,3049 | 95,5460 | 35,9041 |
| 1260 | 891 | 1,44 | 6,600  | -0,090 | 34,0435 | 95,3440 | 35,7059 |
| 1280 | 891 | 1,45 | 6,800  | -0,090 | 34,3049 | 95,1420 | 36,0565 |
| 1300 | 891 | 1,46 | 7,000  | -0,090 | 34,5663 | 94,9400 | 36,4086 |
| 1320 | 891 | 1,45 | 7,200  | -0,090 | 34,3049 | 94,7380 | 36,2103 |
| 1340 | 891 | 1,42 | 7,400  | -0,090 | 33,5206 | 94,5360 | 35,4581 |
| 1360 | 891 | 1,39 | 7,600  | -0,090 | 32,7364 | 94,3340 | 34,7026 |
| 1380 | 890 | 1,36 | 7,800  | -0,100 | 31,9521 | 94,1320 | 33,9440 |
| 1400 | 890 | 1,40 | 8,000  | -0,100 | 32,9978 | 93,9300 | 35,1302 |
| 1420 | 890 | 1,40 | 8,200  | -0,100 | 32,9978 | 93,7280 | 35,2059 |
| 1440 | 890 | 1,33 | 8,400  | -0,100 | 31,1679 | 93,5260 | 33,3253 |
| 1460 | 889 | 1,32 | 8,600  | -0,110 | 30,9064 | 93,3240 | 33,1174 |
| 1480 | 889 | 1,34 | 8,800  | -0,110 | 31,4293 | 93,1220 | 33,7506 |
| 1500 | 889 | 1,33 | 9,000  | -0,110 | 31,1679 | 92,9200 | 33,5427 |
| 1520 | 888 | 1,31 | 9,200  | -0,120 | 30,6450 | 92,7180 | 33,0519 |
| 1540 | 888 | 1,39 | 9,400  | -0,120 | 32,7364 | 92,5160 | 35,3846 |
| 1560 | 888 | 1,45 | 9,600  | -0,120 | 34,3049 | 92,3140 | 37,1611 |
| 1580 | 888 | 1,37 | 9,800  | -0,120 | 32,2135 | 92,1120 | 34,9721 |
| 1600 | 887 | 1,35 | 10,000 | -0,130 | 31,6907 | 91,9100 | 34,4801 |

| Local: Campus                        | Amostra:        | Intermediária_100          |        |
|--------------------------------------|-----------------|----------------------------|--------|
| Data: 12/10/2005 e 13/10/2005        | Volume:         | 75,48                      |        |
| Profundidade retirada da amostra (m) | ):              | h:                         | 5,504  |
| Carga normal (kgf): 102              |                 | Pressão vertical (kPa):    | 100    |
| P. vazador + amostra (g):            | P. vazador:     | P. amostra (g):            | 144,53 |
| Velocidade do ensaio (mm/min):       | 0,031           | γd (kN/m³):                | 14,597 |
| Compr./Larg./Altura da amostra (cm): | 10,1 x 10,1 x 4 | ,10cm γ <b>n (kN/m³):</b>  | 19,148 |
|                                      |                 | γd <sub>máx</sub> (kN/m³): | 14,730 |
|                                      |                 | GC(%):                     | 99     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |  |  |
|----------------------------|-------|--------|---------------|--|--|
| Nº da cápsula:             | 4     | 6      |               |  |  |
| Peso da cápsula (g):       | 10,77 | 12,03  |               |  |  |
| Cáp. + solo úmido (g):     | 29,85 | 30,62  |               |  |  |
| Cáp. + solo seco (g):      | 25,55 | 25,98  |               |  |  |
| Teor de umidade médio (%): | 31,   | 31,18  |               |  |  |

| Leitu | ra no apa | relho |         | DAD     | OOS TRABAL | HADOS      |              |
|-------|-----------|-------|---------|---------|------------|------------|--------------|
| Dh    | Dv        | Anel  | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600   | 100       | 0,14  | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620   | 95        | 1,07  | 0,200   | -0,050  | 24,3709    | 101,8080   | 23,9381      |
| 640   | 90        | 1,20  | 0,400   | -0,100  | 27,7694    | 101,6060   | 27,3305      |
| 660   | 85        | 1,26  | 0,600   | -0,150  | 29,3379    | 101,4040   | 28,9317      |
| 680   | 81        | 1,33  | 0,800   | -0,190  | 31,1679    | 101,2020   | 30,7977      |
| 700   | 78        | 1,37  | 1,000   | -0,220  | 32,2135    | 101,0000   | 31,8946      |
| 720   | 74        | 1,46  | 1,200   | -0,260  | 34,5663    | 100,7980   | 34,2927      |
| 740   | 72        | 1,52  | 1,400   | -0,280  | 36,1348    | 100,5960   | 35,9208      |
| 760   | 69        | 1,64  | 1,600   | -0,310  | 39,2719    | 100,3940   | 39,1178      |
| 780   | 66        | 1,64  | 1,800   | -0,340  | 39,2719    | 100,1920   | 39,1966      |
| 800   | 63        | 1,67  | 2,000   | -0,370  | 40,0561    | 99,9900    | 40,0601      |
| 820   | 60        | 1,75  | 2,200   | -0,400  | 42,1475    | 99,7880    | 42,2370      |
| 840   | 58        | 1,86  | 2,400   | -0,420  | 45,0231    | 99,5860    | 45,2103      |
| 860   | 55        | 1,94  | 2,600   | -0,450  | 47,1145    | 99,3840    | 47,4065      |
| 880   | 53        | 1,96  | 2,800   | -0,470  | 47,6373    | 99,1820    | 48,0302      |
| 900   | 51        | 1,86  | 3,000   | -0,490  | 45,0231    | 98,9800    | 45,4871      |
| 920   | 49        | 1,76  | 3,200   | -0,510  | 42,4089    | 98,7780    | 42,9336      |
| 940   | 47        | 1,82  | 3,400   | -0,530  | 43,9774    | 98,5760    | 44,6127      |
| 960   | 45        | 1,84  | 3,600   | -0,550  | 44,5003    | 98,3740    | 45,2358      |
| 980   | 42        | 1,74  | 3,800   | -0,580  | 41,8861    | 98,1720    | 42,6660      |
| 1000  | 41        | 1,78  | 4,000   | -0,590  | 42,9318    | 97,9700    | 43,8213      |
| 1020  | 41        | 1,82  | 4,200   | -0,590  | 43,9774    | 97,7680    | 44,9814      |

| 1040 | 40 | 1,83 | 4,400  | -0,600 | 44,2389 | 97,5660 | 45,3425 |
|------|----|------|--------|--------|---------|---------|---------|
| 1060 | 38 | 1,88 | 4,600  | -0,620 | 45,5460 | 97,3640 | 46,7791 |
| 1080 | 36 | 1,98 | 4,800  | -0,640 | 48,1602 | 97,1620 | 49,5669 |
| 1100 | 34 | 2,02 | 5,000  | -0,660 | 49,2058 | 96,9600 | 50,7486 |
| 1120 | 33 | 1,84 | 5,200  | -0,670 | 44,5003 | 96,7580 | 45,9913 |
| 1140 | 31 | 1,90 | 5,400  | -0,690 | 46,0688 | 96,5560 | 47,7120 |
| 1160 | 29 | 1,87 | 5,600  | -0,710 | 45,2845 | 96,3540 | 46,9981 |
| 1180 | 28 | 1,85 | 5,800  | -0,720 | 44,7617 | 96,1520 | 46,5531 |
| 1200 | 26 | 1,88 | 6,000  | -0,740 | 45,5460 | 95,9500 | 47,4684 |
| 1220 | 24 | 1,84 | 6,200  | -0,760 | 44,5003 | 95,7480 | 46,4765 |
| 1240 | 23 | 1,81 | 6,400  | -0,770 | 43,7160 | 95,5460 | 45,7539 |
| 1260 | 21 | 1,84 | 6,600  | -0,790 | 44,5003 | 95,3440 | 46,6734 |
| 1280 | 20 | 1,85 | 6,800  | -0,800 | 44,7617 | 95,1420 | 47,0473 |
| 1300 | 18 | 1,81 | 7,000  | -0,820 | 43,7160 | 94,9400 | 46,0459 |
| 1320 | 17 | 1,82 | 7,200  | -0,830 | 43,9774 | 94,7380 | 46,4201 |
| 1340 | 16 | 1,83 | 7,400  | -0,840 | 44,2389 | 94,5360 | 46,7958 |
| 1360 | 15 | 1,91 | 7,600  | -0,850 | 46,3302 | 94,3340 | 49,1130 |
| 1380 | 13 | 1,86 | 7,800  | -0,870 | 45,0231 | 94,1320 | 47,8298 |
| 1400 | 12 | 1,88 | 8,000  | -0,880 | 45,5460 | 93,9300 | 48,4893 |
| 1420 | 11 | 1,77 | 8,200  | -0,890 | 42,6703 | 93,7280 | 45,5257 |
| 1440 | 10 | 1,80 | 8,400  | -0,900 | 43,4546 | 93,5260 | 46,4626 |
| 1460 | 9  | 1,81 | 8,600  | -0,910 | 43,7160 | 93,3240 | 46,8433 |
| 1480 | 8  | 1,83 | 8,800  | -0,920 | 44,2389 | 93,1220 | 47,5063 |
| 1500 | 7  | 1,86 | 9,000  | -0,930 | 45,0231 | 92,9200 | 48,4536 |
| 1520 | 6  | 1,84 | 9,200  | -0,940 | 44,5003 | 92,7180 | 47,9953 |
| 1540 | 5  | 1,80 | 9,400  | -0,950 | 43,4546 | 92,5160 | 46,9698 |
| 1560 | 4  | 1,76 | 9,600  | -0,960 | 42,4089 | 92,3140 | 45,9399 |
| 1580 | 3  | 1,74 | 9,800  | -0,970 | 41,8861 | 92,1120 | 45,4730 |
| 1600 | 2  | 1,74 | 10,000 | -0,980 | 41,8861 | 91,9100 | 45,5729 |

| Local: Campus                         | Amostra:           | Intermediária_200          |        |
|---------------------------------------|--------------------|----------------------------|--------|
| Data:13/10/2005 e 14/10/2005          | Volume:            | 75,48                      |        |
| Profundidade retirada da amostra (m): |                    | h:                         | 24,846 |
| Carga normal (kgf): 204               |                    | Pressão vertical (kPa):    | 200    |
| P. vazador + amostra (g):             | P. vazador:        | P. amostra (g):            | 144,53 |
| Velocidade do ensaio (mm/min):        | 0,031              | γd (kN/m³):                | 14,495 |
| Compr./Larg./Altura da amostra (cm):  | 10,1 x 10,1 x 4,10 | 0cm γ <b>n (kN/m³):</b>    | 19,148 |
|                                       |                    | γd <sub>máx</sub> (kN/m³): | 14,730 |
|                                       |                    | GC(%):                     | 98     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual (

)

| Determinação da umidade:   | ANTES       | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------------|--------|---------------|---|--|
| Nº da cápsula:             | 16          | 30     | 0             | 0 |  |
| Peso da cápsula (g):       | 5,76        | 5,37   | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 18,16 17,05 |        | 0             | 0 |  |
| Cáp. + solo seco (g):      | 14,85 14,51 |        | 0             | 0 |  |
| Teor de umidade médio (%): | 32,10       |        | 0,00          |   |  |

| Leitu | ra no a | oarelho | DADOS TRABALHADOS |         |            |            |              |  |  |
|-------|---------|---------|-------------------|---------|------------|------------|--------------|--|--|
| Dh    | Dv      | Anel    | Dh (mm)           | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |  |  |
| 600   | 500     | 0,18    | 0,000             | 0,000   | 0,0000     | 102,0100   | 0,0000       |  |  |
| 620   | 495     | 1,39    | 0,200             | -0,050  | 32,7364    | 101,8080   | 32,1550      |  |  |
| 640   | 491     | 1,77    | 0,400             | -0,090  | 42,6703    | 101,6060   | 41,9959      |  |  |
| 660   | 487     | 2,10    | 0,600             | -0,130  | 51,2972    | 101,4040   | 50,5870      |  |  |
| 680   | 483     | 2,28    | 0,800             | -0,170  | 56,0028    | 101,2020   | 55,3376      |  |  |
| 700   | 480     | 2,39    | 1,000             | -0,200  | 58,8784    | 101,0000   | 58,2954      |  |  |
| 720   | 477     | 2,48    | 1,200             | -0,230  | 61,2312    | 100,7980   | 60,7464      |  |  |
| 740   | 474     | 2,58    | 1,400             | -0,260  | 63,8454    | 100,5960   | 63,4671      |  |  |
| 760   | 472     | 2,63    | 1,600             | -0,280  | 65,1525    | 100,3940   | 64,8968      |  |  |
| 780   | 469     | 2,67    | 1,800             | -0,310  | 66,1981    | 100,1920   | 66,0713      |  |  |
| 800   | 468     | 2,63    | 2,000             | -0,320  | 65,1525    | 99,9900    | 65,1590      |  |  |
| 820   | 467     | 2,71    | 2,200             | -0,330  | 67,2438    | 99,7880    | 67,3867      |  |  |
| 840   | 465     | 2,72    | 2,400             | -0,350  | 67,5052    | 99,5860    | 67,7859      |  |  |
| 860   | 463     | 2,78    | 2,600             | -0,370  | 69,0738    | 99,3840    | 69,5019      |  |  |
| 880   | 462     | 2,80    | 2,800             | -0,380  | 69,5966    | 99,1820    | 70,1706      |  |  |
| 900   | 460     | 2,80    | 3,000             | -0,400  | 69,5966    | 98,9800    | 70,3138      |  |  |
| 920   | 458     | 2,82    | 3,200             | -0,420  | 70,1194    | 98,7780    | 70,9869      |  |  |
| 940   | 456     | 2,86    | 3,400             | -0,440  | 71,1651    | 98,5760    | 72,1932      |  |  |
| 960   | 455     | 2,82    | 3,600             | -0,450  | 70,1194    | 98,3740    | 71,2784      |  |  |
| 980   | 455     | 2,79    | 3,800             | -0,450  | 69,3352    | 98,1720    | 70,6262      |  |  |
| 1000  | 455     | 2,75    | 4,000             | -0,450  | 68,2895    | 97,9700    | 69,7045      |  |  |

|      | i i | 1    | 1      | 1      |         |         |         |
|------|-----|------|--------|--------|---------|---------|---------|
| 1020 | 454 | 2,76 | 4,200  | -0,460 | 68,5509 | 97,7680 | 70,1159 |
| 1040 | 454 | 2,74 | 4,400  | -0,460 | 68,0281 | 97,5660 | 69,7252 |
| 1060 | 454 | 2,71 | 4,600  | -0,460 | 67,2438 | 97,3640 | 69,0644 |
| 1080 | 453 | 2,76 | 4,800  | -0,470 | 68,5509 | 97,1620 | 70,5532 |
| 1100 | 453 | 2,71 | 5,000  | -0,470 | 67,2438 | 96,9600 | 69,3521 |
| 1120 | 452 | 2,66 | 5,200  | -0,480 | 65,9367 | 96,7580 | 68,1460 |
| 1140 | 452 | 2,60 | 5,400  | -0,480 | 64,3682 | 96,5560 | 66,6641 |
| 1160 | 452 | 2,58 | 5,600  | -0,480 | 63,8454 | 96,3540 | 66,2612 |
| 1180 | 452 | 2,61 | 5,800  | -0,480 | 64,6296 | 96,1520 | 67,2161 |
| 1200 | 452 | 2,62 | 6,000  | -0,480 | 64,8910 | 95,9500 | 67,6301 |
| 1220 | 452 | 2,57 | 6,200  | -0,480 | 63,5839 | 95,7480 | 66,4076 |
| 1240 | 452 | 2,59 | 6,400  | -0,480 | 64,1068 | 95,5460 | 67,0952 |
| 1260 | 452 | 2,57 | 6,600  | -0,480 | 63,5839 | 95,3440 | 66,6890 |
| 1280 | 452 | 2,57 | 6,800  | -0,480 | 63,5839 | 95,1420 | 66,8306 |
| 1300 | 451 | 2,57 | 7,000  | -0,490 | 63,5839 | 94,9400 | 66,9728 |
| 1320 | 451 | 2,53 | 7,200  | -0,490 | 62,5383 | 94,7380 | 66,0118 |
| 1340 | 451 | 2,52 | 7,400  | -0,490 | 62,2768 | 94,5360 | 65,8763 |
| 1360 | 451 | 2,58 | 7,600  | -0,490 | 63,8454 | 94,3340 | 67,6801 |
| 1380 | 451 | 2,59 | 7,800  | -0,490 | 64,1068 | 94,1320 | 68,1031 |
| 1400 | 451 | 2,59 | 8,000  | -0,490 | 64,1068 | 93,9300 | 68,2495 |
| 1420 | 451 | 2,56 | 8,200  | -0,490 | 63,3225 | 93,7280 | 67,5599 |
| 1440 | 450 | 2,55 | 8,400  | -0,500 | 63,0611 | 93,5260 | 67,4263 |
| 1460 | 450 | 2,53 | 8,600  | -0,500 | 62,5383 | 93,3240 | 67,0120 |
| 1480 | 450 | 2,55 | 8,800  | -0,500 | 63,0611 | 93,1220 | 67,7188 |
| 1500 | 450 | 2,53 | 9,000  | -0,500 | 62,5383 | 92,9200 | 67,3033 |
| 1520 | 450 | 2,54 | 9,200  | -0,500 | 62,7997 | 92,7180 | 67,7319 |
| 1540 | 450 | 2,54 | 9,400  | -0,500 | 62,7997 | 92,5160 | 67,8798 |
| 1560 | 449 | 2,53 | 9,600  | -0,510 | 62,5383 | 92,3140 | 67,7452 |
| 1580 | 449 | 2,49 | 9,800  | -0,510 | 61,4926 | 92,1120 | 66,7585 |
| 1600 | 449 | 2,52 | 10,000 | -0,510 | 62,2768 | 91,9100 | 67,7585 |

| Local: Campus                         | Amostra:          | Modificada_30              |        |
|---------------------------------------|-------------------|----------------------------|--------|
| Data: 14/10/2005 e 15/10/2005         | Volume:           | 75,48                      |        |
| Profundidade retirada da amostra (m): |                   | h:                         | 0,073  |
| Carga normal (kgf): 30,6              |                   | Pressão vertical (kPa):    | 30     |
| P. vazador + amostra (g):             | P. vazador:       | P. amostra (g):            | 146,33 |
| Velocidade do ensaio (mm/min):        | 0,031             | γd (kN/m³):                | 14,835 |
| Compr./Larg./Altura da amostra (cm):  | 10,1 x 10,1 x 4,1 | 0cm γ <b>n (kN/m³):</b>    | 19,387 |
|                                       |                   | γd <sub>máx</sub> (kN/m³): | 15,030 |
|                                       |                   | GC(%):                     | 99     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |  |  |
|----------------------------|-------|--------|---------------|--|--|
| Nº da cápsula:             | 6     | 4      |               |  |  |
| Peso da cápsula (g):       | 12,03 | 10,77  |               |  |  |
| Cáp. + solo úmido (g):     | 42,27 | 34,95  |               |  |  |
| Cáp. + solo seco (g):      | 35,92 | 28,71  |               |  |  |
| Teor de umidade médio (%): | 30    | 30,68  |               |  |  |

| Leitura no aparelho DADOS TRABALHADOS |     |      |         |         |            |            |              |
|---------------------------------------|-----|------|---------|---------|------------|------------|--------------|
| Dh                                    | Dv  | Anel | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                                   | 600 | 0,11 | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                                   | 601 | 0,50 | 0,200   | 0,010   | 9,4700     | 101,8080   | 9,3018       |
| 640                                   | 599 | 0,61 | 0,400   | -0,010  | 12,3456    | 101,6060   | 12,1505      |
| 660                                   | 596 | 0,67 | 0,600   | -0,040  | 13,9141    | 101,4040   | 13,7215      |
| 680                                   | 594 | 0,71 | 0,800   | -0,060  | 14,9598    | 101,2020   | 14,7821      |
| 700                                   | 592 | 0,75 | 1,000   | -0,080  | 16,0055    | 101,0000   | 15,8470      |
| 720                                   | 589 | 0,77 | 1,200   | -0,110  | 16,5283    | 100,7980   | 16,3975      |
| 740                                   | 587 | 0,78 | 1,400   | -0,130  | 16,7898    | 100,5960   | 16,6903      |
| 760                                   | 584 | 0,81 | 1,600   | -0,160  | 17,5740    | 100,3940   | 17,5051      |
| 780                                   | 581 | 0,83 | 1,800   | -0,190  | 18,0969    | 100,1920   | 18,0622      |
| 800                                   | 580 | 0,88 | 2,000   | -0,200  | 19,4040    | 99,9900    | 19,4059      |
| 820                                   | 576 | 0,92 | 2,200   | -0,240  | 20,4496    | 99,7880    | 20,4931      |
| 840                                   | 573 | 0,94 | 2,400   | -0,270  | 20,9725    | 99,5860    | 21,0597      |
| 860                                   | 569 | 0,95 | 2,600   | -0,310  | 21,2339    | 99,3840    | 21,3655      |
| 880                                   | 567 | 0,95 | 2,800   | -0,330  | 21,2339    | 99,1820    | 21,4090      |
| 900                                   | 566 | 0,93 | 3,000   | -0,340  | 20,7111    | 98,9800    | 20,9245      |
| 920                                   | 564 | 0,88 | 3,200   | -0,360  | 19,4040    | 98,7780    | 19,6440      |
| 940                                   | 563 | 0,90 | 3,400   | -0,370  | 19,9268    | 98,5760    | 20,2147      |
| 960                                   | 563 | 0,90 | 3,600   | -0,370  | 19,9268    | 98,3740    | 20,2562      |
| 980                                   | 563 | 0,90 | 3,800   | -0,370  | 19,9268    | 98,1720    | 20,2978      |
| 1000                                  | 562 | 0,88 | 4,000   | -0,380  | 19,4040    | 97,9700    | 19,8060      |
| 1020                                  | 562 | 0,90 | 4,200   | -0,380  | 19,9268    | 97,7680    | 20,3817      |

|      |     |      | -      | -      | -       |         | -       |
|------|-----|------|--------|--------|---------|---------|---------|
| 1040 | 562 | 0,90 | 4,400  | -0,380 | 19,9268 | 97,5660 | 20,4239 |
| 1060 | 561 | 0,86 | 4,600  | -0,390 | 18,8811 | 97,3640 | 19,3923 |
| 1080 | 560 | 0,85 | 4,800  | -0,400 | 18,6197 | 97,1620 | 19,1636 |
| 1100 | 560 | 0,86 | 5,000  | -0,400 | 18,8811 | 96,9600 | 19,4731 |
| 1120 | 559 | 0,87 | 5,200  | -0,410 | 19,1425 | 96,7580 | 19,7839 |
| 1140 | 559 | 0,89 | 5,400  | -0,410 | 19,6654 | 96,5560 | 20,3668 |
| 1160 | 558 | 0,87 | 5,600  | -0,420 | 19,1425 | 96,3540 | 19,8669 |
| 1180 | 558 | 0,87 | 5,800  | -0,420 | 19,1425 | 96,1520 | 19,9086 |
| 1200 | 558 | 0,85 | 6,000  | -0,420 | 18,6197 | 95,9500 | 19,4056 |
| 1220 | 556 | 0,82 | 6,200  | -0,440 | 17,8354 | 95,7480 | 18,6275 |
| 1240 | 556 | 0,82 | 6,400  | -0,440 | 17,8354 | 95,5460 | 18,6669 |
| 1260 | 556 | 0,82 | 6,600  | -0,440 | 17,8354 | 95,3440 | 18,7064 |
| 1280 | 555 | 0,83 | 6,800  | -0,450 | 18,0969 | 95,1420 | 19,0209 |
| 1300 | 555 | 0,83 | 7,000  | -0,450 | 18,0969 | 94,9400 | 19,0614 |
| 1320 | 554 | 0,83 | 7,200  | -0,460 | 18,0969 | 94,7380 | 19,1020 |
| 1340 | 554 | 0,86 | 7,400  | -0,460 | 18,8811 | 94,5360 | 19,9724 |
| 1360 | 554 | 0,83 | 7,600  | -0,460 | 18,0969 | 94,3340 | 19,1838 |
| 1380 | 554 | 0,84 | 7,800  | -0,460 | 18,3583 | 94,1320 | 19,5027 |
| 1400 | 553 | 0,84 | 8,000  | -0,470 | 18,3583 | 93,9300 | 19,5446 |
| 1420 | 552 | 0,87 | 8,200  | -0,480 | 19,1425 | 93,7280 | 20,4235 |
| 1440 | 552 | 0,84 | 8,400  | -0,480 | 18,3583 | 93,5260 | 19,6291 |
| 1460 | 552 | 0,83 | 8,600  | -0,480 | 18,0969 | 93,3240 | 19,3914 |
| 1480 | 551 | 0,83 | 8,800  | -0,490 | 18,0969 | 93,1220 | 19,4335 |
| 1500 | 551 | 0,82 | 9,000  | -0,490 | 17,8354 | 92,9200 | 19,1944 |
| 1520 | 550 | 0,81 | 9,200  | -0,500 | 17,5740 | 92,7180 | 18,9543 |
| 1540 | 550 | 0,80 | 9,400  | -0,500 | 17,3126 | 92,5160 | 18,7131 |
| 1560 | 550 | 0,80 | 9,600  | -0,500 | 17,3126 | 92,3140 | 18,7540 |
| 1580 | 550 | 0,80 | 9,800  | -0,500 | 17,3126 | 92,1120 | 18,7952 |
| 1600 | 550 | 0,80 | 10,000 | -0,500 | 17,3126 | 91,9100 | 18,8365 |

| Local: Campus                         | Amostra:           | Modificada_60              |        |
|---------------------------------------|--------------------|----------------------------|--------|
| Data: 15/10/2005 e 16/10/2005         | Volume:            | 75,48                      |        |
| Profundidade retirada da amostra (m): |                    | h:                         | 1,290  |
| Carga normal (kgf): 61,2              |                    | Pressão vertical (kPa):    | 60     |
| P. vazador + amostra (g):             | P. vazador:        | P. amostra (g):            | 146,33 |
| Velocidade do ensaio (mm/min):        | 0,031              | γd (kN/m³):                | 14,869 |
| Compr./Larg./Altura da amostra (cm):  | 10,1 x 10,1 x 4,10 | 0cm γ <b>n (kN/m³):</b>    | 19,387 |
|                                       |                    | γd <sub>máx</sub> (kN/m³): | 15,030 |
|                                       |                    | GC(%):                     | 99     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual ( )

| Determinação da umidade:   | ANTES | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------|--------|---------------|---|--|
| Nº da cápsula:             | 12    | 20     | 0             | 0 |  |
| Peso da cápsula (g):       | 14,71 | 12,54  | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 40,98 | 36,29  | 0             | 0 |  |
| Cáp. + solo seco (g):      | 34,68 | 30,92  | 0             | 0 |  |
| Teor de umidade médio (%): | 30,   | 38     | 0,00          |   |  |

| Leit | ura no ap | arelho | DADOS TRABALHADOS |         |            |            |              |
|------|-----------|--------|-------------------|---------|------------|------------|--------------|
| Dh   | Dv        | Anel   | Dh (mm)           | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600  | 300       | 0,28   | 0,000             | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620  | 294       | 0,94   | 0,200             | -0,060  | 20,9725    | 101,8080   | 20,6000      |
| 640  | 289       | 1,05   | 0,400             | -0,110  | 23,8481    | 101,6060   | 23,4712      |
| 660  | 285       | 1,12   | 0,600             | -0,150  | 25,6780    | 101,4040   | 25,3225      |
| 680  | 281       | 1,20   | 0,800             | -0,190  | 27,7694    | 101,2020   | 27,4396      |
| 700  | 278       | 1,27   | 1,000             | -0,220  | 29,5993    | 101,0000   | 29,3063      |
| 720  | 276       | 1,32   | 1,200             | -0,240  | 30,9064    | 100,7980   | 30,6618      |
| 740  | 274       | 1,55   | 1,400             | -0,260  | 36,9191    | 100,5960   | 36,7004      |
| 760  | 272       | 1,70   | 1,600             | -0,280  | 40,8404    | 100,3940   | 40,6801      |
| 780  | 271       | 2,02   | 1,800             | -0,290  | 49,2058    | 100,1920   | 49,1115      |
| 800  | 269       | 1,84   | 2,000             | -0,310  | 44,5003    | 99,9900    | 44,5047      |
| 820  | 268       | 1,88   | 2,200             | -0,320  | 45,5460    | 99,7880    | 45,6427      |
| 840  | 267       | 1,80   | 2,400             | -0,330  | 43,4546    | 99,5860    | 43,6352      |
| 860  | 266       | 1,76   | 2,600             | -0,340  | 42,4089    | 99,3840    | 42,6718      |
| 880  | 265       | 1,69   | 2,800             | -0,350  | 40,5790    | 99,1820    | 40,9137      |
| 900  | 264       | 1,68   | 3,000             | -0,360  | 40,3176    | 98,9800    | 40,7330      |
| 920  | 264       | 1,63   | 3,200             | -0,360  | 39,0105    | 98,7780    | 39,4931      |
| 940  | 263       | 1,67   | 3,400             | -0,370  | 40,0561    | 98,5760    | 40,6348      |
| 960  | 263       | 1,62   | 3,600             | -0,370  | 38,7490    | 98,3740    | 39,3895      |
| 980  | 262       | 1,63   | 3,800             | -0,380  | 39,0105    | 98,1720    | 39,7368      |
| 1000 | 261       | 1,73   | 4,000             | -0,390  | 41,6247    | 97,9700    | 42,4871      |
| 1020 | 261       | 1,72   | 4,200             | -0,390  | 41,3632    | 97,7680    | 42,3075      |

| 1040 | 260 | 1,70 | 4,400  | -0,400 | 40,8404 | 97,5660 | 41,8593 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1060 | 259 | 1,58 | 4,600  | -0,410 | 37,7034 | 97,3640 | 38,7241 |
| 1080 | 259 | 1,45 | 4,800  | -0,410 | 34,3049 | 97,1620 | 35,3069 |
| 1100 | 258 | 1,53 | 5,000  | -0,420 | 36,3963 | 96,9600 | 37,5374 |
| 1120 | 258 | 1,51 | 5,200  | -0,420 | 35,8734 | 96,7580 | 37,0754 |
| 1140 | 257 | 1,41 | 5,400  | -0,430 | 33,2592 | 96,5560 | 34,4455 |
| 1160 | 257 | 1,33 | 5,600  | -0,430 | 31,1679 | 96,3540 | 32,3472 |
| 1180 | 256 | 1,39 | 5,800  | -0,440 | 32,7364 | 96,1520 | 34,0465 |
| 1200 | 256 | 1,40 | 6,000  | -0,440 | 32,9978 | 95,9500 | 34,3906 |
| 1220 | 256 | 1,32 | 6,200  | -0,440 | 30,9064 | 95,7480 | 32,2789 |
| 1240 | 256 | 1,31 | 6,400  | -0,440 | 30,6450 | 95,5460 | 32,0736 |
| 1260 | 256 | 1,34 | 6,600  | -0,440 | 31,4293 | 95,3440 | 32,9641 |
| 1280 | 255 | 1,28 | 6,800  | -0,450 | 29,8608 | 95,1420 | 31,3855 |
| 1300 | 255 | 1,29 | 7,000  | -0,450 | 30,1222 | 94,9400 | 31,7276 |
| 1320 | 255 | 1,26 | 7,200  | -0,450 | 29,3379 | 94,7380 | 30,9674 |
| 1340 | 255 | 1,26 | 7,400  | -0,450 | 29,3379 | 94,5360 | 31,0336 |
| 1360 | 255 | 1,27 | 7,600  | -0,450 | 29,5993 | 94,3340 | 31,3772 |
| 1380 | 255 | 1,27 | 7,800  | -0,450 | 29,5993 | 94,1320 | 31,4445 |
| 1400 | 254 | 1,22 | 8,000  | -0,460 | 28,2922 | 93,9300 | 30,1206 |
| 1420 | 254 | 1,23 | 8,200  | -0,460 | 28,5537 | 93,7280 | 30,4644 |
| 1440 | 254 | 1,24 | 8,400  | -0,460 | 28,8151 | 93,5260 | 30,8097 |
| 1460 | 254 | 1,19 | 8,600  | -0,460 | 27,5080 | 93,3240 | 29,4758 |
| 1480 | 254 | 1,17 | 8,800  | -0,460 | 26,9851 | 93,1220 | 28,9783 |
| 1500 | 254 | 1,23 | 9,000  | -0,460 | 28,5537 | 92,9200 | 30,7293 |
| 1520 | 254 | 1,15 | 9,200  | -0,460 | 26,4623 | 92,7180 | 28,5406 |
| 1540 | 253 | 1,10 | 9,400  | -0,470 | 25,1552 | 92,5160 | 27,1901 |
| 1560 | 253 | 1,14 | 9,600  | -0,470 | 26,2009 | 92,3140 | 28,3823 |
| 1580 | 253 | 1,14 | 9,800  | -0,470 | 26,2009 | 92,1120 | 28,4446 |
| 1600 | 252 | 1,12 | 10,000 | -0,480 | 25,6780 | 91,9100 | 27,9382 |

| Local: Campus                         | Amostra:         | Modificada_100             |        |
|---------------------------------------|------------------|----------------------------|--------|
| Data: 17/10/2005 e 18/10/2005         | Volume:          | 75,48                      |        |
| Profundidade retirada da amostra (m): |                  | h:                         | 0,602  |
| Carga normal (kgf): 102               |                  | Pressão vertical (kPa):    | 100    |
| P. vazador + amostra (g):             | P. vazador:      | P. amostra (g):            | 146,33 |
| Velocidade do ensaio (mm/min):        | 0,031            | γd (kN/m³):                | 14,804 |
| Compr./Larg./Altura da amostra (cm):  | 10,1 x 10,1 x 4, | 10cm γ <b>n (kN/m³):</b>   | 19,387 |
|                                       |                  | γd <sub>máx</sub> (kN/m³): | 15,030 |
|                                       |                  | GC(%):                     | 98,5   |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual (

)

| Determinação da umidade:   | ANTES | ENSAIO     | DEPOIS ENSAIO |   |  |
|----------------------------|-------|------------|---------------|---|--|
| Nº da cápsula:             | 4     | 6          | 0             | 0 |  |
| Peso da cápsula (g):       | 10,77 | 12,03      | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 36,19 | 36,19 42,9 |               | 0 |  |
| Cáp. + solo seco (g):      | 29,95 | 35,89      | 0             | 0 |  |
| Teor de umidade médio (%): | 30    | ,96        | 0,00          |   |  |

| Leitura no aparelho DADOS TRABALHADOS |     |      |         |         |            |            |              |
|---------------------------------------|-----|------|---------|---------|------------|------------|--------------|
| Dh                                    | Dv  | Anel | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600                                   | 400 | 0,55 | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620                                   | 391 | 1,02 | 0,200   | -0,090  | 23,0638    | 101,8080   | 22,6543      |
| 640                                   | 385 | 1,18 | 0,400   | -0,150  | 27,2466    | 101,6060   | 26,8159      |
| 660                                   | 380 | 1,29 | 0,600   | -0,200  | 30,1222    | 101,4040   | 29,7051      |
| 680                                   | 375 | 1,39 | 0,800   | -0,250  | 32,7364    | 101,2020   | 32,3476      |
| 700                                   | 371 | 1,52 | 1,000   | -0,290  | 36,1348    | 101,0000   | 35,7771      |
| 720                                   | 368 | 1,55 | 1,200   | -0,320  | 36,9191    | 100,7980   | 36,6268      |
| 740                                   | 365 | 1,57 | 1,400   | -0,350  | 37,4419    | 100,5960   | 37,2201      |
| 760                                   | 363 | 1,63 | 1,600   | -0,370  | 39,0105    | 100,3940   | 38,8574      |
| 780                                   | 361 | 1,67 | 1,800   | -0,390  | 40,0561    | 100,1920   | 39,9794      |
| 800                                   | 359 | 1,66 | 2,000   | -0,410  | 39,7947    | 99,9900    | 39,7987      |
| 820                                   | 357 | 1,66 | 2,200   | -0,430  | 39,7947    | 99,7880    | 39,8793      |
| 840                                   | 355 | 1,60 | 2,400   | -0,450  | 38,2262    | 99,5860    | 38,3851      |
| 860                                   | 354 | 1,57 | 2,600   | -0,460  | 37,4419    | 99,3840    | 37,6740      |
| 880                                   | 353 | 1,60 | 2,800   | -0,470  | 38,2262    | 99,1820    | 38,5415      |
| 900                                   | 352 | 1,62 | 3,000   | -0,480  | 38,7490    | 98,9800    | 39,1484      |
| 920                                   | 351 | 1,62 | 3,200   | -0,490  | 38,7490    | 98,7780    | 39,2284      |
| 940                                   | 350 | 1,63 | 3,400   | -0,500  | 39,0105    | 98,5760    | 39,5740      |
| 960                                   | 349 | 1,65 | 3,600   | -0,510  | 39,5333    | 98,3740    | 40,1867      |
| 980                                   | 348 | 1,61 | 3,800   | -0,520  | 38,4876    | 98,1720    | 39,2043      |
| 1000                                  | 348 | 1,63 | 4,000   | -0,520  | 39,0105    | 97,9700    | 39,8188      |

| 1020 | 347 | 1,63 | 4,200  | -0,530 | 39,0105 | 97,7680 | 39,9011 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1040 | 347 | 1,63 | 4,400  | -0,530 | 39,0105 | 97,5660 | 39,9837 |
| 1060 | 347 | 1,59 | 4,600  | -0,530 | 37,9648 | 97,3640 | 38,9926 |
| 1080 | 346 | 1,64 | 4,800  | -0,540 | 39,2719 | 97,1620 | 40,4190 |
| 1100 | 346 | 1,61 | 5,000  | -0,540 | 38,4876 | 96,9600 | 39,6943 |
| 1120 | 345 | 1,59 | 5,200  | -0,550 | 37,9648 | 96,7580 | 39,2368 |
| 1140 | 345 | 1,59 | 5,400  | -0,550 | 37,9648 | 96,5560 | 39,3189 |
| 1160 | 345 | 1,59 | 5,600  | -0,550 | 37,9648 | 96,3540 | 39,4014 |
| 1180 | 345 | 1,58 | 5,800  | -0,550 | 37,7034 | 96,1520 | 39,2122 |
| 1200 | 344 | 1,60 | 6,000  | -0,560 | 38,2262 | 95,9500 | 39,8397 |
| 1220 | 344 | 1,61 | 6,200  | -0,560 | 38,4876 | 95,7480 | 40,1968 |
| 1240 | 344 | 1,63 | 6,400  | -0,560 | 39,0105 | 95,5460 | 40,8290 |
| 1260 | 344 | 1,61 | 6,600  | -0,560 | 38,4876 | 95,3440 | 40,3671 |
| 1280 | 344 | 1,59 | 6,800  | -0,560 | 37,9648 | 95,1420 | 39,9033 |
| 1300 | 343 | 1,59 | 7,000  | -0,570 | 37,9648 | 94,9400 | 39,9882 |
| 1320 | 343 | 1,57 | 7,200  | -0,570 | 37,4419 | 94,7380 | 39,5216 |
| 1340 | 343 | 1,59 | 7,400  | -0,570 | 37,9648 | 94,5360 | 40,1591 |
| 1360 | 343 | 1,60 | 7,600  | -0,570 | 38,2262 | 94,3340 | 40,5222 |
| 1380 | 343 | 1,60 | 7,800  | -0,570 | 38,2262 | 94,1320 | 40,6091 |
| 1400 | 342 | 1,63 | 8,000  | -0,580 | 39,0105 | 93,9300 | 41,5314 |
| 1420 | 342 | 1,59 | 8,200  | -0,580 | 37,9648 | 93,7280 | 40,5053 |
| 1440 | 342 | 1,57 | 8,400  | -0,580 | 37,4419 | 93,5260 | 40,0337 |
| 1460 | 342 | 1,57 | 8,600  | -0,580 | 37,4419 | 93,3240 | 40,1204 |
| 1480 | 341 | 1,57 | 8,800  | -0,590 | 37,4419 | 93,1220 | 40,2074 |
| 1500 | 341 | 1,58 | 9,000  | -0,590 | 37,7034 | 92,9200 | 40,5762 |
| 1520 | 341 | 1,54 | 9,200  | -0,590 | 36,6577 | 92,7180 | 39,5367 |
| 1540 | 341 | 1,52 | 9,400  | -0,590 | 36,1348 | 92,5160 | 39,0579 |
| 1560 | 340 | 1,57 | 9,600  | -0,600 | 37,4419 | 92,3140 | 40,5593 |
| 1580 | 340 | 1,57 | 9,800  | -0,600 | 37,4419 | 92,1120 | 40,6483 |
| 1600 | 340 | 1,57 | 10,000 | -0,600 | 37,4419 | 91,9100 | 40,7376 |

| Local: Campus                        | Amostra:      | Modificada_2 | 200                        |        |
|--------------------------------------|---------------|--------------|----------------------------|--------|
| Data: 18/10/2005 e 19/10/2005        | Volume:       | 75,48        |                            |        |
| Profundidade retirada da amostra (m) | :             |              | h:                         | -0,223 |
| Carga normal (kgf): 204              |               | Pressão ver  | tical (kPa):               | 200    |
| P. vazador + amostra (g):            | P. vazador:   |              | P. amostra (g):            | 146,33 |
| Velocidade do ensaio (mm/min):       | 0,031         |              | γd (kN/m³):                | 14,823 |
| Compr./Larg./Altura da amostra (cm): | 10,1 x 10,1 x | 4,10cm       | γn (kN/m³):                | 19,387 |
|                                      |               |              | γd <sub>máx</sub> (kN/m³): | 15,030 |
|                                      |               |              | GC(%):                     | 99     |

Condições do ensaio: - Natural ( ) - Inundado ( X ) - Residual (

)

| Determinação da umidade:   | ANTES       | ENSAIO | DEPOIS ENSAIO |   |  |
|----------------------------|-------------|--------|---------------|---|--|
| Nº da cápsula:             | 8           | 54     | 0             | 0 |  |
| Peso da cápsula (g):       | 9,73        | 13,56  | 0             | 0 |  |
| Cáp. + solo úmido (g):     | 33,93       | 38,51  | 0             | 0 |  |
| Cáp. + solo seco (g):      | 28,05 32,83 |        | 0             | 0 |  |
| Teor de umidade médio (%): | 30          | ,79    | 0,00          |   |  |

| Leitu | ra no ap | oarelho |         | DAI     | DOS TRABAL | .HADOS     |              |
|-------|----------|---------|---------|---------|------------|------------|--------------|
| Dh    | Dv       | Anel    | Dh (mm) | Dv (mm) | Anel (kgf) | Área (cm²) | Tensão (kPa) |
| 600   | 600      | 0,16    | 0,000   | 0,000   | 0,0000     | 102,0100   | 0,0000       |
| 620   | 596      | 1,63    | 0,200   | -0,040  | 39,0105    | 101,8080   | 38,3177      |
| 640   | 593      | 1,81    | 0,400   | -0,070  | 43,7160    | 101,6060   | 43,0250      |
| 660   | 589      | 2,02    | 0,600   | -0,110  | 49,2058    | 101,4040   | 48,5246      |
| 680   | 587      | 2,10    | 0,800   | -0,130  | 51,2972    | 101,2020   | 50,6879      |
| 700   | 584      | 2,17    | 1,000   | -0,160  | 53,1271    | 101,0000   | 52,6011      |
| 720   | 582      | 2,21    | 1,200   | -0,180  | 54,1728    | 100,7980   | 53,7439      |
| 740   | 580      | 2,25    | 1,400   | -0,200  | 55,2185    | 100,5960   | 54,8913      |
| 760   | 579      | 2,29    | 1,600   | -0,210  | 56,2642    | 100,3940   | 56,0434      |
| 780   | 578      | 2,30    | 1,800   | -0,220  | 56,5256    | 100,1920   | 56,4173      |
| 800   | 575      | 2,28    | 2,000   | -0,250  | 56,0028    | 99,9900    | 56,0084      |
| 820   | 575      | 2,35    | 2,200   | -0,250  | 57,8327    | 99,7880    | 57,9556      |
| 840   | 574      | 2,40    | 2,400   | -0,260  | 59,1398    | 99,5860    | 59,3857      |
| 860   | 574      | 2,41    | 2,600   | -0,260  | 59,4012    | 99,3840    | 59,7694      |
| 880   | 573      | 2,39    | 2,800   | -0,270  | 58,8784    | 99,1820    | 59,3640      |
| 900   | 573      | 2,40    | 3,000   | -0,270  | 59,1398    | 98,9800    | 59,7492      |
| 920   | 572      | 2,37    | 3,200   | -0,280  | 58,3555    | 98,7780    | 59,0775      |
| 940   | 572      | 2,36    | 3,400   | -0,280  | 58,0941    | 98,5760    | 58,9333      |
| 960   | 572      | 2,33    | 3,600   | -0,280  | 57,3099    | 98,3740    | 58,2571      |
| 980   | 572      | 2,30    | 3,800   | -0,280  | 56,5256    | 98,1720    | 57,5781      |
| 1000  | 572      | 2,28    | 4,000   | -0,280  | 56,0028    | 97,9700    | 57,1632      |

| 1020 | 571 | 2,27 | 4,200  | -0,290 | 55,7413 | 97,7680 | 57,0139 |
|------|-----|------|--------|--------|---------|---------|---------|
| 1040 | 571 | 2,27 | 4,400  | -0,290 | 55,7413 | 97,5660 | 57,1319 |
| 1060 | 571 | 2,25 | 4,600  | -0,290 | 55,2185 | 97,3640 | 56,7135 |
| 1080 | 571 | 2,27 | 4,800  | -0,290 | 55,7413 | 97,1620 | 57,3695 |
| 1100 | 570 | 2,33 | 5,000  | -0,300 | 57,3099 | 96,9600 | 59,1067 |
| 1120 | 570 | 2,43 | 5,200  | -0,300 | 59,9241 | 96,7580 | 61,9319 |
| 1140 | 570 | 2,47 | 5,400  | -0,300 | 60,9697 | 96,5560 | 63,1444 |
| 1160 | 570 | 2,43 | 5,600  | -0,300 | 59,9241 | 96,3540 | 62,1916 |
| 1180 | 570 | 2,44 | 5,800  | -0,300 | 60,1855 | 96,1520 | 62,5941 |
| 1200 | 570 | 2,45 | 6,000  | -0,300 | 60,4469 | 95,9500 | 62,9983 |
| 1220 | 570 | 2,41 | 6,200  | -0,300 | 59,4012 | 95,7480 | 62,0391 |
| 1240 | 570 | 2,53 | 6,400  | -0,300 | 62,5383 | 95,5460 | 65,4536 |
| 1260 | 569 | 2,37 | 6,600  | -0,310 | 58,3555 | 95,3440 | 61,2053 |
| 1280 | 569 | 2,32 | 6,800  | -0,310 | 57,0484 | 95,1420 | 59,9614 |
| 1300 | 569 | 2,33 | 7,000  | -0,310 | 57,3099 | 94,9400 | 60,3643 |
| 1320 | 569 | 2,33 | 7,200  | -0,310 | 57,3099 | 94,7380 | 60,4930 |
| 1340 | 569 | 2,28 | 7,400  | -0,310 | 56,0028 | 94,5360 | 59,2396 |
| 1360 | 569 | 2,27 | 7,600  | -0,310 | 55,7413 | 94,3340 | 59,0893 |
| 1380 | 569 | 2,27 | 7,800  | -0,310 | 55,7413 | 94,1320 | 59,2161 |
| 1400 | 569 | 2,27 | 8,000  | -0,310 | 55,7413 | 93,9300 | 59,3435 |
| 1420 | 569 | 2,27 | 8,200  | -0,310 | 55,7413 | 93,7280 | 59,4714 |
| 1440 | 569 | 2,25 | 8,400  | -0,310 | 55,2185 | 93,5260 | 59,0408 |
| 1460 | 568 | 2,31 | 8,600  | -0,320 | 56,7870 | 93,3240 | 60,8493 |
| 1480 | 568 | 2,31 | 8,800  | -0,320 | 56,7870 | 93,1220 | 60,9813 |
| 1500 | 568 | 2,37 | 9,000  | -0,320 | 58,3555 | 92,9200 | 62,8019 |
| 1520 | 568 | 2,29 | 9,200  | -0,320 | 56,2642 | 92,7180 | 60,6831 |
| 1540 | 568 | 2,27 | 9,400  | -0,320 | 55,7413 | 92,5160 | 60,2505 |
| 1560 | 568 | 2,24 | 9,600  | -0,320 | 54,9571 | 92,3140 | 59,5328 |
| 1580 | 568 | 2,25 | 9,800  | -0,320 | 55,2185 | 92,1120 | 59,9471 |
| 1600 | 567 | 2,25 | 10,000 | -0,330 | 55,2185 | 91,9100 | 60,0789 |