UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL

DEPARTAMENTO DE TECNOLOGIA

Curso de Engenharia Civil

Juarez Bernardi

CARACTERIZAÇÃO DE JAZIDAS DE SOLO RESIDUAL DE BASALTO VISANDO SEU EMPREGO EM BARRAGENS DE TERRA

Ijuí/RS

Juarez Bernardi

CARACTERIZAÇÃO DE JAZIDAS DE SOLO RESIDUAL DE BASALTO VISANDO SEU EMPREGO EM BARRAGENS DE TERRA

Trabalho de Conclusão de Curso de Engenharia Civil apresentado como requisito parcial para obtenção do grau de Engenheiro Civil.

Ijuí

FOLHA DE APROVAÇÃO

Trabalho de conclusão de curso defendido e aprovado em sua forma final pelo professor orientador e pelos membros da banca examinadora.

Prof. Luciano Pivoto Specht, Dr. - Orientador

Banca Examinadora

Prof. Luís Eduardo Modler, M. Eng. UNIJUÍ/DeTec

Prof. Lidiane Bittencourt Barroso, M. Eng. UNIJUÍ/DeTec

Prof. Cristina Eliza Pozzobon, M. Eng UNIJUÍ/DeTec Dedico este trabalho aos meus pais que sempre me apoiaram.

Agradeço ao Prof. Luciano Pivoto Specht, Dr. Orientador pela competência, responsabilidade e confiança.

Aos demais professores do curso por terem dividido seus conhecimentos conosco.

Aos laboratoristas Salete e Luis pela disponibilidade e auxílio nos ensaios.

A secretária Cláudia pela amizade e dedicação.

A UNIJUÍ pela disponibilidade da formação acadêmica.

Aos colegas pela amizade, companheirismo e convivência.

Aos meus pais Alzevir e Loni pelo amor, carinho, segurança, apoio, confiança depositados em mim. Esta conquista também é de vocês.

A minha namorada Ana pela ajuda, paciência, entendimento e amor.

A todas as pessoas que de uma ou outra forma colaboraram na realização desta pesquisa.

A Deus, pela oportunidade de viver e concluir esse curso de graduação.

RESUMO

A região Noroeste do Estado do Rio Grande do Sul tem sua economia baseada na agricultura, a qual vem enfrentando sérios problemas nos últimos anos, em função dos períodos de estiagem que causam perdas na produção. Com isto houve um aumento na demanda por construções de reservatórios de água (barragens) para abastecimento e irrigação. Além disso, o desenvolvimento da região depende cada vez mais da disponibilidade de energia elétrica, necessitando da construção de barragens para geração de energia. Tais obras necessitam de grandes investimentos para implantação e, neste aspecto, as barragens de terra se apresentam como uma alternativa favorável e atrativa para essa região, uma vez que apresentam custos menores quando comparados a outros tipos de estruturas. Isso ocorre porque a região apresenta uma fisiografia ligeiramente ondulada, seus vales são largos e um solo residual maduro de basalto, tipicamente argiloso com boas propriedades hidráulicas e mecânicas, encontrado em camadas espessas. Em função disso, realizou-se um estudo das propriedades mecânicas e hidráulicas de quatro solos residuais de basalto coletado na região de Ijuí, visando determinar seus parâmetros para utilizá-los em projetos e construções de barragens. Para desenvolver este estudo foram realizados ensaios em amostras deformadas, que consistiram basicamente na caracterização física, mecânica e hidráulica de quatro solos coletados na região. A partir dos resultados obtidos verificou-se que as amostras de solo residual de basalto realmente possuem características semelhantes e que podem ser usadas na construção de obras de terra, em especial barragens. Contudo, concluiu-se que na falta de valores específicos dos parâmetros dos solos residuais de basalto, pode-se utilizar alguns valores típicos que caracterizam esse tipo de solo para pré-dimensionamento e anteprojetos de barragens.

Palavras-chave: Barragem de terra, solos residuais, propriedades mecânicas e hidráulicas.

LISTA DE FIGURAS

Figura 1: Esquema da localização de barragens	22
Figura 2: Barragem de engastamento nas ombreiras	27
Figura 3: Barragem de engastamento no fundo do vale	27
Figura 4: Barragem de peso ou gravidade	28
Figura 5: Barragem de abóbadas engastada nos contrafortes	29
Figura 6: Barragem de contraforte.	30
Figura 7: Barragem de concreto em arco de dupla curvatura	31
Figura 8: Barragem de terra homogênea	32
Figura 9: Barragem de terra-enrocamento	
(a) com núcleo central	
(b) inclinado para montante.	33
Figura 10: Dimensões padronizadas do cilindro e soquete de ensaio de compactação	38
Figura 11: Representação gráfica da curva de compactação	41
Figura 12: Curvas de compactação normal de alguns solos brasileiros	42
Figura 13: Curvas de compactação de um solo com diferentes energias	44
Figura 14: Água percolando num permeâmetro	48
Figura 15: Esquema de permeâmetro de carga constante	49
Figura 16: Esquema de permeâmetro de carga variável	50
Figura 17: Esquema referente ao atrito entre dois corpos	
(a) resultante das tensões normal e cisalhante	
(b) tensão cisalhante x tensão normal	56
Figura 18: Transmissão de força entre partículas de areia e de argilas	57
Figura 19: Representação dos critérios de ruptura	
(a) Coulomb	
(b) Mohr	58
Figura 20: Ensaios de cisalhamento direto	
(a) esquema do equipamento	

	(b) tensão cisalhante x tensão normal	
	(c) deformação vertical x deslocamento horizontal	.59
Figura 21:	Esquema da câmara de ensaio triaxial	61
Figura 22:	Localização das jazidas de coleta das amostras	.67
Figura 23:	Coleta das amostras.	68
Figura 24:	Esquema representativo da sedimentação	71
Figura 25:	Ensaio de granulometria por sedimentação.	72
Figura 26:	Classificação triangular do B.P.R.	.76
Figura 27:	Ensaio de compactação realizado no laboratório.	80
Figura 28:	Corpo-de-prova dentro da cuba, conectado a bomba de vácuo	81
Figura 29:	Corpo-de-prova submetido à carga d'água da coluna	82
Figura 30:	Esquema do ensaio de cisalhamento direto	83
Figura 31:	Acessórios do equipamento de cisalhamento direto	.85
Figura 32:	Equipamento de cisalhamento direto	.85
Figura 33:	Curvas granulométricas dos solos	88
Figura 34:	Índices de consistência dos solos.	90
Figura 35:	Massa específica real dos grãos dos solos estudados	92
Figura 36:	Identificação dos solos sobre o triângulo.	94
Figura 37:	Curvas de compactação das amostras de solo	97
Figura 38:	Parâmetros de compactação	
	(a) umidade ótima dos solos estudados	
	(b) densidade máxima dos solos estudados	98
Figura 39:	Coeficiente de permeabilidade dos solos estudados	00
Figura 40:	Gráfico resultante da $\sigma = 30 \text{ kPa}$	
	(a) tensão cisalhante x deslocamento horizontal	
	(b) deformação vertical x deslocamento horizontal1	01
Figura 41:	Gráfico resultante da σ = 60 kPa	
	(a) tensão cisalhante x deslocamento horizontal	
	(b) deformação vertical x deslocamento horizontal1	02
Figura 42:	Gráfico resultante da $\sigma = 100 \text{ kPa}$	
	(a) tensão cisalhante x deslocamento horizontal	
	(b) deformação vertical x deslocamento horizontal	03
Figura 43:	Gráfico resultante da σ = 200 kPa	

(a) tensão cisalhante x deslocamento horizontal	
(b) deformação vertical x deslocamento horizontal	104
Figura 44: Envoltória de resistência dos Solos A, B, C e D	105
Figura 45: Parâmetros de resistência ao cisalhamento dos Solos A, B, C e D	
(a) valores do ângulo de atrito	
(b) valores da coesão	107

LISTA DE QUADROS

Quadro 1: Alguns dados históricos	24
Quadro 2: Energias de compactação por impacto	44
Quadro 3: Equipamentos de compactação	46
Quadro 4: Classificação dos solos segundo seu coeficiente de permeabilidade	53
Quadro 5: Alguns valores típicos de coeficientes de permeabilidade	53
Quadro 6: Resumo dos ensaios de caracterização física	64
Quadro 7: Resumo dos ensaios de compactação	65
Quadro 8: Resumo dos ensaios de permeabilidade	65
Quadro 9: Resumo dos ensaios de cisalhamento direto	66
Quadro 10: Índices de consistência de alguns solos brasileiros	74
Quadro 11: Terminologia do sistema unificado	77
Quadro 12: Esquema para classificação pelo sistema unificado	77
Quadro 13: Esquema para classificação pelo sistema rodoviário	78
Quadro 14: Viscosidade da água em função da variação de temperatura	82
Ouadro 15: Valores típicos dos solos estudados	109

LISTA DE TABELAS

Tabela 1: Diâmetro dos grãos (mm) x porcentagem passante	87
Tabela 2: Resumo da análise granulométrica.	88
Tabela 3: Índices de consistência das amostras de solo	89
Tabela 4: Índice de atividade dos solos	91
Tabela 5: Massa específica real dos grãos dos solos estudados	91
Tabela 6: Resumo dos ensaios de compactação.	96
Tabela 7: Coeficiente de permeabilidade dos solos estudados	99
Tabela 8: Tensão cisalhante máxima dos Solos A, B, C e D para cada tensão normal	105
Tabela 9: Valores do ângulo de atrito e coesão dos solos	106

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Nacional de Normas Técnicas

ANA: Agência Nacional de Águas

A: Área

a: Área do tubo de carga

BEFC: Barragem de enrocamento com face de concreto

B.P.R.: Bureau of Public Roads

CBR: Califórnia Bering Ratio

CIGB: Comissão Internacional de Grandes Barragens

c': Coesão

cm: Centímetros

cm³: Centímetros cúbicos

C: Fator de forma

CD: Ensaio adensado drenado

CU: Ensaio adensado não drenado

D: Diâmetro da esfera

D_s: Um diâmetro efetivo das partículas

 δ_h : Deslocamento horizontal

EUA: Estados Unidos da América

E_H: Empuxo hidrostático da água

E: Energia de compactação

e: Espessura da camada de solo solto

ε_v: Deformação vertical

F: Força resultante

f: Coeficiente de atrito

φ': Ângulo de atrito

f(h): em função da umidade

GC: Grau de compactação

g: Gramas

°C: Temperatura em graus Celsius

γ_{dmáx}: Massa específica aparente seca máxima

γ_d: Massa específica aparente seca

γ: Massa específica aparente

γw: Massa específica da água e/ou do fluido

h₀: Altura inicial da água

h₁: Altura final d'água

h: Umidade

hot: Umidade ótima

h_q: altura de queda do soquete

h/L ou i: Gradiente hidráulico

Δh: Desvio de umidade

Δσ: Variação de tensão

IP: Índice de Plasticidade

ISC: Índice de Suporte de Califórnia

IA: Índice de Atividade

 k_0 : Fator que depende da forma dos poros

kg: Quilo-grama

k: Coeficiente de permeabilidade ou condutividade hidráulica

kN/m³: Quilo-Newton por metro cúbico

km/h: Quilômetro por hora

kPa: Quilo-Pascal

LL: Limite de Liquidez

LP: Limite de Plasticidade

L: Altura do corpo-de-prova

MW: Mega-Watts

M: Massa

μ: Viscosidade do fluido

N: Força normal ou carga vertical

NBR: Norma Brasileira Regulamentadora

N: Número de golpes por camada ou número de passadas do rolo compactador

N.A: Nível d'água

n: Número de camadas

P: Peso

Págua: Peso da água

Ps: Massa do solo seco

P: Peso do soquete

Pa: Pascal

p: Pressão

Q: Vazão

RS: Rio Grande do Sul

S: Superficie específica

σ: Tensão normal

 σ_c : Tensão normal confinante

t: Tempo

τ: Tensão cisalhante

tg: Tangente

 $\tau_{m\acute{a}x}$: Tensão de ruptura

 τ_{res} : Tensão residual

T: Força tangencial ou cisalhante

UTM: Universal Transversa de Mercator

UU: Ensaio não adensado não drenado

UNIJUÍ: Universidade Regional do Noroeste do Estado do Rio Grande do Sul

URSS: União das Repúblicas Socialistas Soviéticas

UHE: Usina hidroelétrica

u: Pressão negativa da água ou poro-pressão

Var: Volume de ar

V: Volume

V_s: Volume dos grãos do solo

v: Velocidade

WCD: Word Commission of Dams

SUMÁRIO

1 INTRODUÇÃO	18
1.1 TEMA DA PESQUISA	18
1.2 DELIMITAÇÃO DO TEMA	18
1.3 QUESTÃO DE ESTUDO	18
1.4 OBJETIVOS	19
1.4.1 Objetivo geral	19
1.4.2 Objetivos específicos	19
1.5 JUSTIFICATIVA	19
1.6 SISTEMATIZAÇÃO DA PESQUISA	21
2 REVISÃO BIBLIOGRÁFICA	22
2.1 BARRAGENS	
2.1.1 Definição e função	
2.1.2 Evolução histórica	
2.1.3 Estudos preliminares	25
2.1.4 Tipos de barragens	26
2.1.4.1 Barragem de engastamento nas ombreiras	
2.1.4.2 Barragem de engastamento no fundo	27
2.1.4.3 Barragem de concreto	28
2.1.4.4.Barragem de gravidade de terra	31
2.1.4.5 Barragem de enrocamento com membrana de concreto	34
2.1.5 Escolha do tipo de barragem	34
2.1.6 Segurança em barragens	35
2.2 COMPACTAÇÃO DOS SOLOS	36
2.2.1 Definição e função	36
2.2.2 Ensaios de compactação	37
2.2.3 Curvas de compactação	
2.2.4 Energias de compactação	42

2.2.5 Compactação do solo em campo	45
2.2.6 Controle de compactação	46
2.3 PERMEABILIDADE DOS SOLOS	47
2.3.1 Determinação da permeabilidade dos solos	47
2.3.2 Fatores que influem na permeabilidade dos solos	51
2.3.3 Valores típicos de coeficiente de permeabilidade (k)	53
2.4 RESISTÊNCIA AO CISALHAMENTO	54
2.4.1 Definição	54
2.4.2 Parâmetros de resistência ao cisalhamento	55
2.4.2.1 Atrito	55
2.4.2.2 Coesão	57
2.4.3 Critérios de ruptura	58
2.4.4 Ensaios de cisalhamento dos solos	59
2.4.4.1 Ensaio de cisalhamento direto	59
2.4.4.2 Ensaio de compressão triaxial	60
2.5 ESTUDO DE CARACTERIZAÇÃO GEOTÉCNICA NO RS	61
3 METODOLOGIA	63
3.1 CLASSIFICAÇÃO DO ESTUDO	63
3.2 PLANO DE COLETA DE DADOS	63
3.2.1 Caracterização física	64
3.2.2 Compactação	65
3.2.3 Permeabilidade	65
3.2.4 Cisalhamento direto	65
3.3 MATERIAIS UTILIZADOS	66
3.4 PROCEDIMENTOS DE ENSAIOS E DESCRIÇÃO DE EQUIPAM	IENTOS69
3.4.1 Ensaios de caracterização física	69
3.4.1.1 Granulometria	69
3.4.1.2 Massa específica real	72
3.4.1.3 Índices de consistência ou Limites de Atterberg	73
3.4.2 Classificação dos solos	75
3.4.2.1 Triangular do B.P.R (Bureau of Public Roads)	75
3.4.2.2 Unificada	76
3.4.2.3 Rodoviária	78

3.4.3 Ensaio de compactação	79
3.4.4 Ensaio de permeabilidade	80
3.4.5 Ensaio de cisalhamento direto	83
4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS	86
4.1 CARACTERIZAÇÃO FÍSICA DOS SOLOS	86
4.1.1 Análise granulométrica	86
4.1.2 Índices de consistência	89
4.1.3 Massa específica real dos grãos	91
4.2 CLASSIFICAÇÃO DOS SOLOS	92
4.2.1 Classificação triangular	93
4.2.2 Classificação unificada	94
4.2.3 Classificação rodoviária	95
4.3 COMPACTAÇÃO	95
4.4 PERMEABILIDADE	98
4.5 RESISTÊNCIA AO CISALHAMENTO	100
4.5.1 Tensão normal de 30 kPa	101
4.5.2 Tensão normal de 60 kPa	102
4.5.3 Tensão normal de 100 kPa	103
4.5.4 Tensão normal de 200 kPa	103
4.5.5 Análise e sistematização	104
5 CONSIDERAÇÕES FINAIS	108
5.1 CONCLUSÃO	108
5.2 SUGESTÕES PARA TRABALHOS FUTUROS	109
REFERÊNCIAS BIBLIOGRÁFICAS	111
ANEXO I	114
ANEXO II	117
ANEXO III	125
ANEXO IV	129
ANEXO V	132
ANEXO VI	137

ANEXO VII142	
--------------	--

1 INTRODUÇÃO

1.1 TEMA DA PESQUISA

O tema da pesquisa é: mecânica dos solos aplicada a construção de barragens.

1.2 DELIMITAÇÃO DO TEMA

Com a finalidade de identificar os parâmetros físicos, de compactação, permeabilidade e resistência ao cisalhamento de solos residuais de basalto da região Noroeste do Rio Grande do Sul, realizou-se conjuntos de ensaios de caracterização, compactação, permeabilidade e resistência ao cisalhamento em quatro amostras diferentes de solo, coletadas em locais previamente determinados, sendo preparadas e ensaiadas em laboratório.

1.3 QUESTÃO DE ESTUDO

As questões que balizaram este estudo foram:

- a) O solo residual de basalto da região Noroeste do Estado do Rio Grande do Sul possui propriedades mecânicas e hidráulicas adequadas para ser utilizado na construção de barragens de terra?
- b) Quais são os valores característicos dos parâmetros de compactação, permeabilidade e resistência ao cisalhamento que regem as propriedades mecânicas e hidráulicas do solo residual de basalto da região Noroeste do Estado do Rio Grande do Sul?

1.4 OBJETIVOS

1.4.1 Objetivo geral

O objetivo geral da pesquisa foi:

Determinar e analisar as propriedades físicas, mecânicas e hidráulicas de quatro amostras diferentes de solo residual de basalto da região Noroeste do Estado do Rio Grande do Sul, com a finalidade de utilizá-las em projetos e construções de barragens de terra.

1.4.2 Objetivos específicos

- ☐ Determinar as características físicas (granulometria, massa específica e índices de consistência) de cada solo estudado;
- Determinar a umidade ótima (h_{ot}) e a massa específica máxima $(\gamma_{dmáx})$ com energia de compactação normal, de quatro amostras de solo residual de basalto da região Noroeste do Estado do Rio Grande do Sul, possíveis de serem utilizados na construção de barragens de terra;
- Determinar o coeficiente de permeabilidade (k) das quatro amostras de solos em estudo;
 - Determinar os parâmetros de resistência ao cisalhamento (φ' e c') destas amostras;
- □ Verificar se é possível estabelecer valores típicos para o solo da região em relação às propriedades estudadas.

1.5 JUSTIFICATIVA

A água é um dos recursos naturais de fundamental importância para a sobrevivência e desenvolvimento dos seres vivos na Terra. No estado sólido e líquido, a água ocupa 2/3 da superfície do Planeta Terra, sendo que apenas 1% deste total é própria para o consumo

humano e para a produção de alimentos, enquanto que 97% são de água salgada dos oceanos e mares e 2% estão em forma de gelo. Esse recurso natural renovável é usado para os mais diversos fins:

- Dessedentação humana e animal;
- □ Abastecimento de indústrias e postos de combustíveis (lavagem);
- □ Irrigação de lavouras;
- □ Geração de energia elétrica, etc.

Devido ao fato do meio ambiente sofrer constantes degradações, a água está se tornando cada vez mais escassa e contaminada. Sabe-se que nos dias atuais, 20 países se encontram em estado de penúria em relação à água e, há perspectivas que em 2025, esse número ultrapasse 35 países. Além disso, ocorrem constantes mudanças climáticas alterando o ciclo hidrológico no Planeta. Com isso surgem as estiagens, que são prejudiciais à agricultura e à geração de energia elétrica como por exemplo, a "seca" ocorrida no final de 2004 e início de 2005; e a crise energética que ocorreu no Brasil em 2001, respectivamente. Conseqüentemente esses problemas prejudicam consideravelmente o desenvolvimento sócio-econômico de uma região.

Nesse sentido é relevante pensar em novas alternativas, como por exemplo, a construção de barragens com a finalidade de acumular e reservar água para abastecimento humano e animal, irrigação de lavouras e/ou geração de energia elétrica.

Tais obras necessitam de grandes investimentos para implantação e, neste aspecto, as barragens de terra se mostram como uma alternativa atrativa para a região Noroeste do RS, pois apresentam custos mais baixos quando comparados a outros tipos de barragens. Isso ocorre porque essa região apresenta uma fisiografia ligeiramente ondulada, com vales largos e solo residual de basalto em camadas espessas (grandes jazidas), tipicamente argiloso, com boas propriedades hidráulicas e mecânicas (AZAMBUJA, PICADA & CORDEIRO, 1980).

Em função disso, considerou-se de grande importância investigar as características mecânicas e hidráulicas dos solos dessa região, determinando parâmetros indispensáveis no projeto e construção de barragens de terra, para que estas possam ser executadas com segurança e economia.

Conhecendo-se os parâmetros do solo, torna-se possível desenvolver uma análise completa e detalhada a fim de verificar a viabilidade técnica e econômica da utilização das jazidas de solo em estudo na construção de obras geotécnicas em gerais, especialmente em barragens de terra.

1.6 SISTEMATIZAÇÃO DA PESQUISA

O relatório dessa pesquisa apresenta a seguinte estrutura:

No primeiro capítulo é apresentado o tema da pesquisa, sua delimitação, a questão de estudo, os objetivos gerais e específicos, seguido por fim da justificativa.

O segundo capítulo aborda os assuntos relacionados ao tema da pesquisa como: tipos de barragens, compactação dos solos, permeabilidade dos solos e resistência ao cisalhamento. No decorrer do capítulo são mencionados os ensaios usados para determinação das propriedades dos solos. Também são apresentadas figuras, tabelas e equações que explicam o conteúdo referente ao estudo proposto.

No terceiro capítulo é descrita a metodologia utilizada na pesquisa, envolvendo o método de estudo, o procedimento da coleta dos dados, os materiais e equipamentos utilizados nos ensaios.

O quarto capítulo é constituído da tabulação dos dados obtidos em cada ensaio, seguido da análise e comparação dos resultados.

O quinto e último capítulo diz respeito às considerações finais, onde são apresentadas as conclusões do trabalho e algumas sugestões de estudos para outros trabalhos de pesquisa.

Por fim, são apresentadas as referências bibliográficas utilizadas para o desenvolvimento da pesquisa, seguidas dos anexos.

2 REVISÃO BIBLIOGRÁFICA

2.1 BARRAGENS

2.1.1 Definição e função

Conforme descreve Caputo (1987) as barragens são estruturas de contenção construídas em vales ou rios destinadas a fechá-los transversalmente, a fim de represar água, conforme a Figura 1.

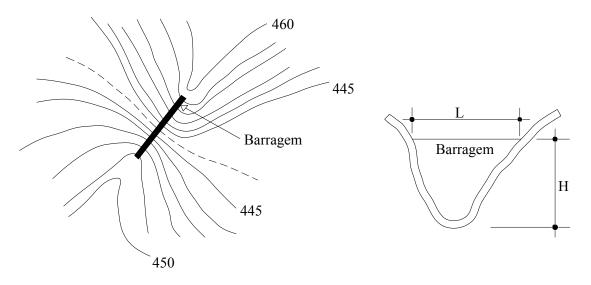


Figura 1: Esquema da localização de barragens Fonte: Caputo (1987)

Em função do arranjo físico das barragens, elas podem ser classificadas em "barragens de acumulação" e "barragens de derivação". As barragens de acumulação são aquelas cuja água acumulada é utilizada para as três principais finalidades: dessedentação humana e animal, irrigação de culturas e produção de energia elétrica. Já as barragens de derivação, se

destinam ao desvio dos cursos d'água, às vezes, também com a finalidade de geração de energia elétrica.

O local de implantação de uma barragem depende das condições geológicas e geotécnicas da região, além de fatores hidráulicos, hidroelétricos e político-econômicos.

Segundo Massad (2003), são consideradas barragens de grande porte, todas aquelas que possuem altura maior que 15 m, ou entre 10 e 15 m e que satisfaça uma das condições abaixo:

- □ Comprimento de crista igual ou superior a 500 m;
- Reservatório com volume total superior a 1.000.000 m³;
- □ Vertedouro com capacidade superior a 2000 m³/s;
- □ Barragem com condições difíceis de fundações;
- □ Barragem com projeto não convencional.

2.1.2 Evolução histórica

Segundo Massad (2003) as barragens de terra são contenções que já vinham sendo erguidas desde a antiguidade. Há registros de uma barragem com 12 m de altura, construída no Egito há cerca de 6.800 anos, que rompeu por efeitos de transbordamento.

Conforme relata o autor as antigas barragens de terra eram homogêneas, sendo que o solo era transportado de forma manual e compactado através do pisoteamento de animais e pessoas. Em São Paulo, no início do século XX, os ingleses construíram a Barragem Guarapiranga, usando a técnica de aterro hidráulico e compactação por carneiros. No ano de 1820, Telford introduziu a técnica do veículo de argila para garantir a estanqueidade das barragens. Já em 1850, em função da carência de material terroso (argiloso), os mineiros da Califórnia começaram a usar enrocamento nas barragens, executados com empilhamento de blocos de rocha. Atualmente, os aterros de enrocamento são compactados com rolos vibratórios, apresentando melhor desempenho.

Hoje, em função das modernas técnicas construtivas, constroem-se barragens em terra armada e barragens com membranas (de madeira, aço, material betuminoso ou concreto) colocadas na face montante de enrocamento, com a função de impermeabilizá-las.

No Quadro 1 são apresentados alguns dados históricos referentes às barragens da antiguidade e ao surgimento de novas práticas de execução:

Quadro 1: Alguns Dados Históricos. Fonte: Massad (2003)

Barragem de Sadd-El-Katara Altura: 12 m Destruída por transbordamento Barragem de Terra no Ceilão Altura: 12 a 27 m Ceilão 100 a C. Barragems Romanas em Arco Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Fim do Século XIX Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	Ano	Registro ou Ocorrência	Local
Altura: 12 m Destruída por transbordamento Barragem de Terra no Ceilão Altura: 12 a 27 m Ceilão 13.000.000 m³ de material 100 a C. Barragems Romanas em Arco Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragems de terra e enrocamento Fim do Século XIX Telford introduz o uso de núcleos argilosos em barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador pé-de-carneiro 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragems com membranas Brasil	АПО		Locui
Destruída por transbordamento Barragem de Terra no Ceilão Altura: 12 a 27 m 13.000.000 m³ de material 100 a C. Barragens Romanas em Arco Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragem de terra e enrocamento Fim do Século XIX Fim do Século XIX Seculo XIX Patente do primeiro rolo compactador pé-de-carneiro 1859 Patente do primeiro rolo compactador pé-de-carneiro Pato A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragem de Narek (URSS): 312 m Barragem de Nurek (URSS): 312 m Barragens com membranas Patente do primeiro on Ceilão Ceilão Norte da Itália Sul da França India Patente de Rientes Espanha Espanha Espanha Espanha Espanha Espanha Espanha Espanha França FUA Funça EUA Barragem de Port Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água França EUA Barragem de Nurek (URSS): 312 m Barragem de Nurek (URSS): 312 m Barragem com membranas Brasil	4000 C		F :
Barragem de Terra no Ceilão Altura: 12 a 27 m 13.000.000 m³ de material 100 a C. Barragens Romanas em Arco Barragem Madduk-Masur 1200 d C. Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Fim do Século XIX Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água 1859 Patente do primeiro rolo compactador pé-de-carneiro 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	4800 a C.		Egito
Sou a C. Altura: 12 a 27 m Ceilão			
13.000.000 m³ de material 100 a C. Barragens Romanas em Arco Norte da Itália Sul da França Barragem Madduk-Masur Altura: 90 m Índia Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Espanha Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m EUA Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Norte da Itália Sul da França Espanha Espanha Espanha França EUA EUA França EUA Burgaerragem de Nurek (URSS): 312 m Barragem de Nurek (URSS): 312 m Barragens com membranas	7 00 G	<u> </u>	G 114
Barragens Romanas em Arco Norte da Itália Sul da França	500 a C.		Ceilão
Barragens Romanas em Arco Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil		13.000.000 m ³ de material	
Barragem Madduk-Masur Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Fim do Século XIX Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	100 a C	Barragens Romanas em Arco	
1200 d C. Altura: 90 m Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento 1820 Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Fim do Século XIX Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	100 u 0.		Sul da França
Destruída por transbordamento Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil		1	
Barragem de Estrecho de Rientes Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Bespanha Espanha Espanha Eupa Barragem de Nurek (URSS): 312 m Barragens com membranas	1200 d C.	Altura: 90 m	Índia
Altura: 46 m Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragems com membranas Brasil		Destruída por transbordamento	
Destruída logo após o primeiro enchimento Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil		Barragem de Estrecho de Rientes	
Telford introduz o uso de núcleos argilosos em barragens de terra e enrocamento Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Inglaterra EUA EUA Barragens de núcleos argilosos Inglaterra EUA EUA Barragens com membranas Brasil	1789	Altura: 46 m	Espanha
Fim do Século XIX Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Inglaterra EUA EUA EUA Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil		Destruída logo após o primeiro enchimento	
Fim do Século XIX Barragem de Fort Peck Altura: 76 m Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	1920	Telford introduz o uso de núcleos argilosos	Inglotorro
Altura: 76 m Volume de material: 100.000.000 m³ 1856 Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas BUA EUA EUA EUA EUA EUA Barragem de Nurek (URSS): 312 m Barragens com membranas	1620	em barragens de terra e enrocamento	Iligiaterra
Século XIX Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas EUA França Inglaterra EUA EUA EUA Barragem de Nurek (URSS): 312 m URSS Brasil	Eine de	Barragem de Fort Peck	
Volume de material: 100.000.000 m³ Experiências de Darcy Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios EUA Rolos compactadores vibratórios EUA Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil		Altura: 76 m	EUA
Experiências de Darcy Velocidade de percolação da água 1859 Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas França Inglaterra EUA EUA URSS Barragens com membranas	Seculo AIA	Volume de material: 100.000.000 m ³	
Velocidade de percolação da água Patente do primeiro rolo compactador a vapor Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas França Inglaterra EUA EUA URSS Barragens com membranas	1056		Г
Patente do primeiro rolo compactador a vapor 1904 Surge o primeiro rolo compactador pé-de-carneiro A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Inglaterra EUA EUA URSS Barragens com membranas	1830	Velocidade de percolação da água	França
1904 Surge o primeiro rolo compactador pé-de-carneiro 1930 - 40 A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Inglaterra EUA EUA URSS Barragens com membranas	1050		I 1 - 4
1904 Surge o primeiro rolo compactador pé-de-carneiro 1930 - 40 A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios EUA Barragem de Nurek (URSS): 312 m URSS Barragens com membranas Brasil	1839	±	Ingiaterra
pé-de-carneiro 1930 - 40 A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios Barragem de Nurek (URSS): 312 m Barragens com membranas Brasil	1004		THIA
1930 - 40 A Mecânica dos Solos consolida-se como ciência aplicada Rolos compactadores vibratórios EUA Barragem de Nurek (URSS): 312 m URSS Barragens com membranas Brasil	1904		EUA
1930 - 40 como ciência aplicada Rolos compactadores vibratórios EUA Barragem de Nurek (URSS): 312 m URSS Barragens com membranas Brasil	1930 - 40	±	THE
Rolos compactadores vibratórios EUA Barragem de Nurek (URSS): 312 m URSS Barragens com membranas Brasil			EUA
Hoje Barragem de Nurek (URSS): 312 m Barragens com membranas URSS Brasil			EUA
Barragens com membranas Brasil	***	-	
<u> </u>	Hoje	, , , , , , , , , , , , , , , , , , ,	
Barragens em terra armada e outros		Barragens em terra armada	

As primeiras barragens de terra construídas no Brasil no início do século XX foram na região Nordeste, com a finalidade de dessedentação e irrigação, diminuindo os prejuízos provocados pelas estiagens. Tratava-se de obras projetadas em bases empíricas. Mais tarde, em 1947, inaugurou-se à moderna técnica de projeto e construção de barragens de terra no Rio de Janeiro. Nessa época, Terzaghi começou a usar o filtro vertical ou chaminé, como forma de drenagem interna de barragens de terra (VARGAS, 1977).

Segundo Mello (1975) *apud* Massad (2003) uma barragem pode ser vista como uma unidade composta por vários segmentos:

- □ Bacia da represa;
- □ Terrenos de fundação;
- ☐ Estruturas anexas (vertedouro, descarga de fundo, túneis, tomadas d'água, casa de máquinas, etc);
 - □ Instrumentos de controle;
 - ☐ Instalações para comunicação e manutenção.

2.1.3 Estudos preliminares

Segue a descrição dos quatro estudos preliminares indispensáveis a um projeto de barramento.

□ Topográficos: trata-se de levantamentos topográficos da região onde será construída a barragem, a fim de delinear a bacia hidrográfica, obter o perfil natural do eixo da barragem, bem como o relevo do local.

Nessa fase de estudo, são de grande importância as fotografias aéreas, as quais podem fornecer informações do tipo de vegetação predominante na região, da existência de vales estreitos (revelam a existência de rochas de boa qualidade) e da existência de canais de erosão (voçorocas) características de solos impermeáveis.

- ☐ Hidrológicos: diz respeito às investigações do regime de água da região, através de dados obtidos de estações pluviométricas.
- ☐ Geológicos: referem-se as investigações do maciço rochoso do local, a fim de determinar o tipo de rocha, sua composição, sua estrutura, a existência de fendilhamentos (diáclases) e o grau de decomposição.
- Geotécnicos: nessa fase investiga-se as propriedades dos materiais de fundação do local de construção da barragem e dos materiais de empréstimo, principalmente quando se trata de barragens de material granular e/ou terra.

2.1.4 Tipos de barragens

Existem vários tipos de barragens, cujas técnicas de construção já se encontram consolidadas. De acordo com os autores Azambuja, Picada & Cordeiro (1980); Caputo (1987) e Massad (2003), os principais tipos de barragens são:

- □ Barragem de engastamento nas ombreiras;
- □ Barragem de engastamento no fundo;
- □ Barragem de concreto;
- Barragem de gravidade de terra.

2.1.4.1 Barragem de engastamento nas ombreiras

Esse tipo de barragem pode ser construída em locais onde os vales são estreitos com escarpas verticais e quando as ombreiras são constituídas de rocha sã. Esta deve apresentar poucas diáclases e ter capacidade para resistir aos esforços de engastamento , de acordo com a Figura 2.

As barragens de engastamento são construídas em concreto armado ou protendido, com a finalidade de transmitir o empuxo das águas para as ombreiras onde está engastada. Caracterizam-se por serem bastante delgadas e conseqüentemente consumirem menor quantidade de concreto, constituindo-se no tipo de barragem de menor custo, embora exijam apuradas técnicas de execução.

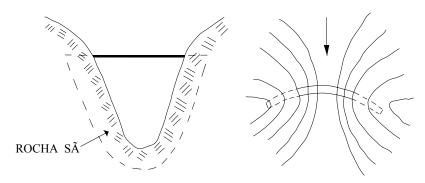


Figura 2: Barragem de engastamento nas ombreiras Fonte: Azambuja, Picada & Cordeiro (1980)

2.1.4.2 Barragem de engastamento no fundo

Essas barragens, também construídas em concreto armado ou protendido, são construídas nos locais em que o vale é largo e a rocha sã estiver próxima da superfície para resistir os esforços de engastamento na base, conforme apresentado na Figura 3.

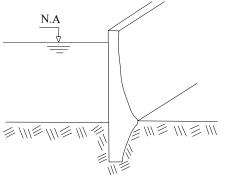


Figura 3: Barragem de engastamento no fundo do vale Fonte: Azambuja, Picada & Cordeiro (1980)

2.1.4.3 Barragens de concreto

As barragens de concreto exigem uma fundação resistente, ou seja, devem ser construídas sobre rocha sã. Quando essa rocha apresentar problemas (fissuras), deve-se fazer uma consolidação do maciço através de injeções de nata de cimento, tornando-o mais resistente e impermeável.

Segundo Caputo (1987) e Massad (2003), as barragens de concreto podem ser classificadas em: barragens de peso ou gravidade, de arco gravidade, de abóbadas, de contrafortes e em arco de dupla curvatura.

a) Barragem de peso ou gravidade: Em função do seu grande peso, esse tipo de contenção exige fundação em rocha, a qual oferece maior capacidade de suporte. São executadas em locais onde o vale é largo e apresenta rocha sã ou alterada a pouca profundidade. É construída utilizando concreto massa ou ciclópico (não armado) e conseqüentemente, resistem o empuxo hidrostático da água (E_H) contida no reservatório através de seu próprio peso (P), que corresponde à principal força estabilizadora, conforme se apresenta na Figura 4. A estabilidade é verificada sob dois aspectos: quanto ao deslizamento e quanto ao tombamento.

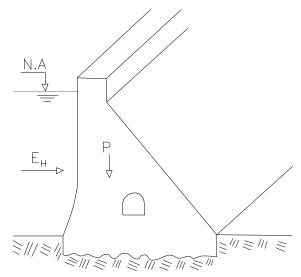


Figura 4: Barragem de peso ou gravidade Fonte: Adaptada de Azambuja, Picada & Cordeiro (1980)

- b) Barragem de arco gravidade: Nesse caso, a barragem tem formato curvo, é semelhante a uma concha com as costas voltadas para a montante, esse formato permite que uma parte da força da água seja transmitida para as rochas das ombreiras da barragem, enquanto que o restante das pressões é estabilizado pelo próprio peso da estrutura.
- c) Barragem de abóbadas: São barragens, que em função de seu formato tem sua estrutura submetida basicamente a esforços de compressão (propriedade principal do concreto).

A cortina é formada por várias abóbadas ou cúpulas engastadas nos contrafortes, conforme a Figura 5.

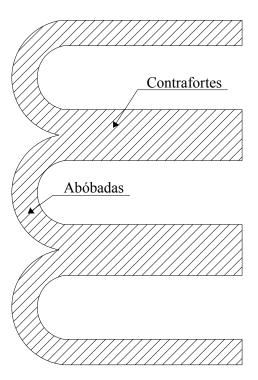


Figura 5: Barragem de abóbadas engastada nos contrafortes Fonte: Adaptada de Caputo (1987)

d) Barragem de contrafortes: É uma barragem construída em concreto armado, onde o empuxo da água é transmitido às fundações por meio de vários contrafortes ligados entre si por uma cortina de concreto. Essa cortina pode ser apoiada nos contrafortes de maneira

vertical ou inclinada. Quando inclinada, a estabilidade quanto ao deslizamento é maior, em função da resultante do empuxo hidrostático que se soma ao peso da estrutura.

Esse tipo de barragem requer menor volume de concreto em relação à barragem de gravidade, mas em compensação exige maior quantidade de fôrma e armadura. Por isso está sujeita a um maior custo de conservação, além de ter menor durabilidade quando comparada com a de gravidade de concreto.

A barragem de contraforte pode ser construída em vales largos, com a rocha sã ou alterada a pouca profundidade, de acordo com a Figura 6.

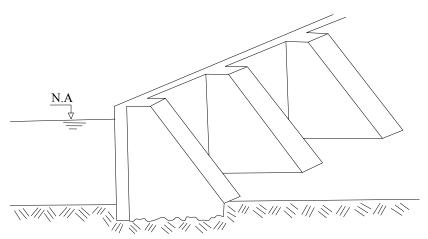


Figura 6: Barragens de contraforte Fonte: Azambuja, Picada & Cordeiro (1980)

Segundo Massad (2003), este tipo de contenção d'água requer cuidados especiais com as fundações, uma vez que sua base em contato com o maciço rochoso é bastante pequena. Por outro lado, há vantagens no que diz respeito as subpressões.

e) Barragem de concreto em arco de dupla curvatura: Conforme descreve Massad (2003), esse tipo de barragem tem forma de "casca", fazendo com que o concreto trabalhe na compressão. É construída em locais que apresentam fundações em rocha de boa qualidade, engastada em vales fechados. Possuem uma espessura na ordem de 10 a 15% da altura da barragem, conforme mostra a Figura 7.

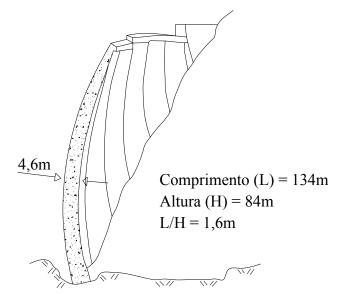


Figura 7: Barragem de concreto em arco de dupla curvatura Fonte: Massad (2003)

2.1.4.4 Barragens de gravidade de terra

As barragens de terra são constituídas de material granular, formando seções homogêneas ou mistas. Embora este tipo de barragens consiste na forma mais antiga de contenção de água, quando forem projetadas e executadas de forma correta, podem substituir os demais tipos não somente na questão técnica (eficiência), mas também econômica (material de baixo custo).

a) Barragem de terra homogênea: As barragens homogêneas são construídas totalmente com o mesmo material, conforme se observa na Figura 8. É a mais usada na região Noroeste do Rio Grande do Sul, em função das características topográficas (vales bastante abertos) e geotécnicas (disponibilidade de material terroso) que apresenta. Salienta-se que as barragens de terra possuem maior tolerância nas deformações da fundação, possibilitando a sua construção até mesmo sobre solos moles.

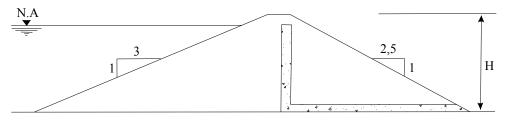


Figura 8: Barragem de terra homogênea Fonte: Massad (2003)

As inclinações dos taludes de montante e jusante desse tipo de contenção são fixadas de modo que garantam a estabilidade do maciço durante a sua vida útil, nas situações de enchimento e esvaziamento do reservatório.

Azambuja, Picada & Cordeiro (1980) afirmam que o talude a montante das barragens de terra deve ser enrocado, ou seja, revestido por uma camada de fragmentos de rocha, objetivando proteger o talude da ação erosiva das ondas que se formam no reservatório.

Para Massad (2003) um dos principais problemas que preocupam os projetistas é o fenômeno de *Piping*¹, entubamento, ou erosão regressiva tubular, que pode ocorrer no corpo das barragens ou nas suas fundações, levando-as ao colapso. Por esse motivo deve-se projetar os filtros de proteção (verticais ou inclinados), os quais são constituídos de material granular, com granulometria adequada para evitar o carreamento de solo, conforme os "Critérios de filtros de proteção de Terzaghi²".

As barragens de terra podem ser construídas de forma zoneada, ou seja, a seção transversal apresenta o mesmo tipo de solo, porém este é compactado em diferentes condições de umidade. Nas bordas da seção da barragem é utilizado solo seco conferindo maior estabilidade ao maciço, enquanto no núcleo é usado solo úmido, o qual oferece maior estanqueidade.

_

¹ Piping: consiste na erosão do solo em um determinado ponto da superfície de descarga, quando as tensões efetivas se anulam, causando perda de resistência, provocando concentração de fluxo nesta região; com o aumento do gradiente, a erosão aumenta progressivamente, formando um furo que progride regressivamente para o interior do solo.

² Critérios de filtros de proteção: são empregados quando há transição entre camadas de solo diferentes e que possa haver percolação de água. Baseia-se nas curvas granulométricas dos materiais. São eles:

a) $D_{15 \text{ filtro}} > 5$. $D_{15 \text{ solo}}$

b) $D_{15 \text{ filtro}} < 5 \cdot D_{85 \text{ solo}}$

b) Barragem de terra – enrocamento: Estas barragens são constituídas por um núcleo central ou inclinado para montante, executado com material argiloso, e enrocamento executado com fragmentos de rocha ou material arenoso, conforme mostra as Figuras 9 (a) e (b). O núcleo sendo impermeável garante a estanqueidade da barragem, enquanto os enrocamentos por apresentarem elevado ângulo de atrito, conferem estabilidade aos taludes de montante e jusante e impedem a erosão da camada argilosa.

Segundo Massad (2003), nesse tipo de barragem deve-se dispor de uma camada de transição gradual, em termos de granulometria, entre a argila e o material rochoso para evitar o fenômeno de *Piping*, uma vez que o enrocamento de jusante, permite uma vazão rápida das águas de percolação. Além disso, o autor salienta a necessidade de um maciço de fundação mais estanque, uma vez que a percolação d'água concentra-se sob a base do núcleo, a qual é relativamente pequena quando comparada com a barragem de terra homogênea que apresenta um caminho de percolação maior.

Esse tipo de barragem é indicado em locais onde a rocha sã, ou alterada é muito profunda, suportando na sua grande base o empuxo das águas e do próprio peso. Por ter uma estrutura flexível, admitem certas deformações do terreno.

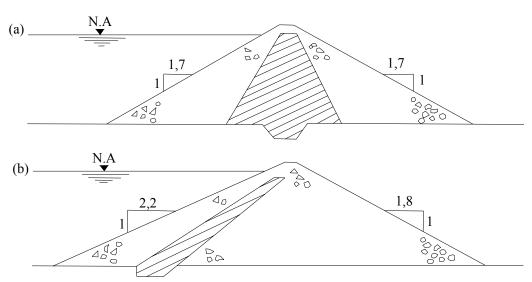


Figura 9: Barragem de terra-enrocamento

(a) com núcleo central

(b) com núcleo inclinado para montante

Fonte: Massad (2003)

2.1.4.5 Barragem de enrocamento com membrana de concreto

São as barragens constituídas de material rochoso apresentando na face montante uma membrana de concreto, servindo como septo impermeável. Esta membrana é formada por placas ligadas entre si por meio de juntas especiais. Isso porque o enrocamento é um material deformável e pode sofrer significativos recalques quando ocorrer o enchimento do reservatório.

A vantagem da utilização deste tipo de barragem diz respeito ao tempo de sua construção, pois tanto o aterro quanto à membrana de concreto podem ser executados independentemente do clima (estações chuvosas).

As barragens de enrocamento com membrana de concreto também são denominadas barragens de enrocamento com face de concreto (BEFC).

Segundo Albertoni et al (2002), a técnica de execução de barragens de enrocamento com face de concreto (BEFC) teve início no Brasil, a partir da década de 70 com a construção da Usina Hidroelétrica (UHE) "Foz do Areia" no Rio Iguaçu, estado do Paraná com capacidade de 1.674 MW. Por apresentar a barragem mais alta até então (160 m), essa obra se constituiu num marco histórico. Com o passar dos anos, novos projetos foram desenvolvidos utilizando a mesma técnica de construção de barragens (BEFC), como é o caso da UHE Itá, UHE Quebra-Queixo, UHE Barra Grande e UHE Campos Novos.

2.1.5 Escolha do tipo de barragem

O tipo de barragem a ser construída num determinado local depende de vários fatores de ordem técnica e econômica. Os principais fatores são: geológico-geotécnico; hidrológico-hidráulico; topográfico; materiais de empréstimo; custo; prazo; clima e experiência construtiva.

Para escolher a barragem a ser erguida num determinado local, deve-se haver um estudo detalhado de todos os fatores citados acima, e posteriormente, uma análise dos tipos de barragens possíveis de serem executadas, optando por aquela que apresentar maior segurança e melhor viabilidade técnica-econômica.

2.1.6 Segurança em barragens

O projeto de barragem quando bem desenvolvido, seguido de uma execução criteriosa irá consequentemente diminuir gastos futuros com manutenção e restauração. Estes gastos são necessários para evitar possíveis acidentes quando a barragem estiver em operação, ou com o decorrer do tempo de sua vida útil.

Segundo Floss et al (2005), as barragens são obras que necessitam de acompanhamento técnico detalhado durante o projeto, execução e principalmente após o início de operação.

De acordo com a WCD – Word Commission of Dams (2000) *apud* Floss et al (2005), um terço dos países do mundo dependem de usinas hidrelétricas para produção de energia elétrica, sendo que as grandes barragens geram 19% de toda a eletricidade mundial.

No Brasil existem cerca de 300.000 barragens, sendo que deste total, 900 são classificadas como grandes barragens (MENESCAL et al, 2005-a). Esse número expressa a preocupação do governo brasileiro quanto à integridade das estruturas, elaborando um Projeto de Lei (nº 1.181/03), que estabelece algumas diretrizes para inspeção e segurança de barragens.

Conforme relata Silveira (1990) apud Menescal, Filho, Gondim & Oliveira (2005-b), a Comissão Internacional de Grandes Barragens (CIGB), define segurança como sendo a capacidade das estruturas, reservatórios e zona a jusante da barragem em atender requisitos de desempenho durante a expectativa de vida da estrutura, considerando aspectos ambientais, estruturais, hidráulicos e operacionais.

Depois de uma série de rupturas catastróficas, a partir da década de 50, diversos países passaram a adotar medidas que garantissem a segurança de suas barragens. Segundo Menescal et al (2005-c), no ano de 1979, durante o Congresso Internacional de Grandes Barragens realizado pela Comissão Internacional de Grandes Barragens (CIGB), decidiu-se investir maiores esforços no âmbito da segurança. Com relação ao Brasil, a legislação não apresenta exigências detalhadas no que diz respeito à segurança de barragens. Porém, com a criação da Agência Nacional de Águas (ANA), entende-se que este órgão irá assumir as ações que regulam e fiscalizam a segurança das obras hídricas do país, englobando hidrelétricas, barragens de abastecimento, canais, estações elevatórias, adutoras, túneis etc.

As barragens que armazenam água para abastecimento, geração de energia elétrica e irrigação de culturas, devem ser capazes de suportar as condições adversas à que são submetidas, para não potencializarem os efeitos das enchentes, ou até mesmo ser o fator gerador de enchentes, como ocorreu na Barragem de Camará, no estado da Paraíba, que se rompeu em junho de 2004, liberando para jusante cerca de 17 milhões de metros cúbicos de água, causando graves problemas, em torno de seis mortes, 1.500 desabrigados e centenas de casas destruídas (MENESCAL et al, 2005-a).

Sendo assim, fica clara a necessidade de estudos e recursos voltados para a manutenção e recuperação de barragens. Mas também são indispensáveis os estudos que visam determinar as propriedades físicas, mecânicas e hidráulicas dos materiais possíveis de serem utilizados na execução de barragens, que estabelecem os parâmetros necessários para que um projeto seja desenvolvido de forma segura e econômica.

2.2 COMPACTAÇÃO DOS SOLOS

2.2.1 Definição e função

Segundo Vargas (1977), o estudo da compactação do solo é indispensável em obras de terra, principalmente na construção de aterros. A compactação é um processo que confere ao

solo maior densidade e resistência, que consequentemente, resulta em maior estabilidade e estanqueidade do maciço.

Vargas (1977) afirma que a técnica de compactação é relativamente recente, pois anteriormente os aterros eram feitos através do simples lançamento de solo em camadas, aguardando um certo período de tempo para a consolidação do maciço, para que este pudesse ser utilizado com segurança. Essa prática resultava em grandes compressibilidades do aterro, em função dos grandes vazios formados entre as camadas lançadas e da porosidade do próprio solo. A moderna técnica de compactação consiste no lançamento de solo em camadas horizontais, seguida da passagem de rolos compressores com grande peso, eliminando os vazios de ar existente no interior do solo.

Portanto, a compactação é um processo mecânico ou manual, realizado através da aplicação de pressão, impacto ou vibração, que visa aumentar a massa específica aparente seca do solo, expulsando os vazios de ar. Isso confere ao solo maior resistência ao cisalhamento, menor compressibilidade e maior impermeabilidade, resultando consequentemente na estabilidade permanente do aterro.

2.2.2 Ensaios de compactação

Segundo Pinto (2002) a técnica de compactação foi desenvolvida pelo engenheiro norteamericano Proctor em 1933, o qual descobriu que aplicando-se uma determinada energia de
compactação (um certo número de passadas de um determinado equipamento no campo ou
um certo número de golpes de um soquete sobre o solo contido num molde), a densidade
resultante do solo é dada em função de sua umidade. Quando a umidade do solo a ser
compactado é muito baixa, há um grande atrito entre as suas partículas, dificultando a redução
dos vazios de ar. Por outro lado, se esta umidade for muito alta, a água causa um excesso de
lubrificação entre os grãos e a compactação não consegue mais eliminar o ar dos vazios, pois
este está ocluso (envolto por água). Dessa maneira, existe um certo teor de umidade chamada
"umidade ótima", para uma determinada energia de compactação, que leva o solo a ter uma
"massa específica aparente seca máxima".

A partir dos estudos de Proctor, surgiu o Ensaio de Compactação, conhecido como Ensaio Normal de Proctor, universalmente padronizado (no Brasil pela ABNT com a NBR 7182 / 86).

O ensaio é realizado adicionando uma certa quantia de água em uma porção de solo, o qual deve ser homogeneizado para desmanchar os torrões e distribuir de maneira uniforme a umidade. Em seguida compacta-se a amostra de solo dentro de um recipiente metálico de forma cilíndrica, com volume igual a 1000 cm³, em três camadas sucessivas, sob a ação de 26 golpes de um soquete, pesando 2,5 kg, caindo de uma altura de 30,5 cm. As dimensões do cilindro e do soquete são mostradas na Figura 10 a seguir.

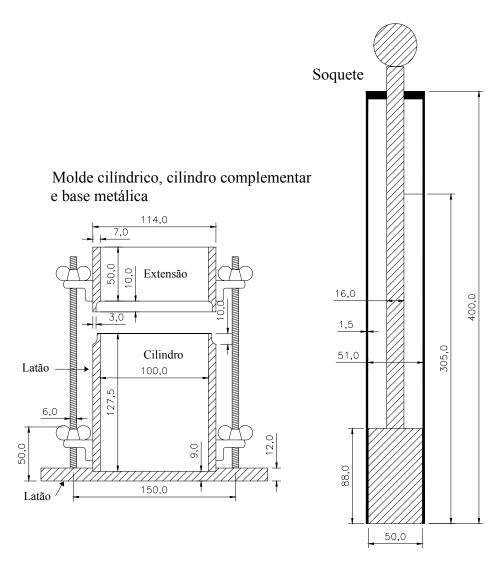


Figura 10: Dimensões padronizadas do cilindro e soquete de ensaio de compactação Fonte: Adaptada de Vargas (1977)

O ensaio de compactação é repetido para diferentes teores de umidade, sendo determinado à massa específica aparente para cada um deles, da seguinte forma:

Massa específica aparente resultante:

$$\gamma = M/V$$
 Equação 1

Onde: γ = massa específica aparente (kN/m³); M = massa (kg); V = volume(m³).

Umidade do solo compactado:

$$h = \frac{P_{\text{água}}}{P_{\text{S}}} \times 100$$
 Equação 2

Onde: h = umidade (%); $P_{água} = peso da água (g);$ $P_{S} = massa do solo seco (g).$

Massa específica aparente seca do solo compactado:

$$\gamma_d = \frac{\gamma}{1 + h/100}$$
 Equação 3

Onde: γ_d = massa específica aparente seca. γ = massa específica aparente (kN/m³); h = umidade (%);

A partir dos valores obtidos é possível traçar a curva de compactação que será abordada no item 2.2.3 – Curvas de compactação.

Para Caputo (1988) é conveniente que o traçado da curva de compactação seja feito mediante a determinação de cinco pontos de umidade, de maneira que dois deles se encontrem na zona seca (ramo da esquerda da curva), um próximo à umidade ótima e os outros dois na zona úmida (ramo da direita da curva).

Os ensaios de compactação podem ser feitos com reuso ou sem reuso do material. Quando a determinação dos pontos da curva é realizada com amostras virgens (sem reuso) é necessária uma maior quantidade de solo, porém os resultados são mais representativos.

Massad (2003) afirma que o reuso da mesma porção de solo na obtenção dos diversos pontos da curva de compactação pode causar quebras de partículas, tornando o solo mais "fino", ou uniformizar melhor a umidade.

A Norma Brasileira de Ensaio de Compactação (NBR 7182 / 86) permite que os faça com secagem prévia do solo ou sem secagem (umidade natural).

Segundo Pinto (2002), a pré-secagem da amostra influencia nas propriedades do solo, além de dificultar a posterior homogeneização da umidade incorporada.

Na construção de aterros, o solo não é empregado na sua umidade natural, uma vez que é feito ajustes para cima ou para baixo a fim de colocá-los na umidade especificada. Dessa forma o ensaio deveria ser feito a partir da umidade natural do solo, obtendo os pontos da curva com acréscimo de água ou secagem da amostra. Embora o ensaio sem total secagem prévia ser mais representativo, a prática atual é fazer a pré-secagem.

2.2.3 Curvas de compactação

Com os resultados obtidos do ensaio de compactação de um solo, sob diferentes condições (teores) de umidade, traça-se a curva de compactação também conhecida como Curva de Proctor. A curva consiste na representação gráfica da variação das massas específicas aparentes do solo, em função da sua umidade ($\gamma_d = f(h)$), de onde se obtém o valor da massa específica aparente seca máxima ($\gamma_{dmáx}$) do material e o ponto correspondente à umidade ótima (h_{ot}) conforme mostra a Figura 11.

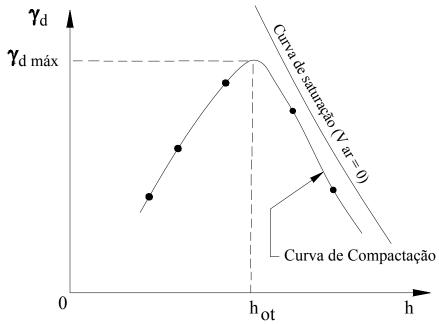


Figura 11: Representação gráfica da curva de compactação

Fonte: Adaptada de Caputo (1988)

Na Figura 11, o comportamento do solo pode ser explicado considerando que à medida que cresce o teor de umidade, até um certo valor (h_{ot}), o solo torna-se mais trabalhável, resultando em maiores γ_d e menores teores de ar. Não sendo possível expulsar todo o ar existente nos vazios do solo, a curva de compactação não poderá nunca alcançar a curva de saturação ($V_{ar} = 0$), justificando-se assim, a partir do $\gamma_{dmáx}$, o ramo descendente (CAPUTO, 1988).

Segundo Massad (2003) no ramo seco da curva, isto é, abaixo da umidade ótima, na medida que se adiciona água, as partículas de solo se aproximam (efeito lubrificante da água). Já no ramo úmido (acima da umidade ótima), a água passa a existir em excesso, o que provoca um afastamento das partículas de solo, resultando na diminuição da sua massa específica.

As curvas de compactação, embora se diferenciam para cada tipo de solo, são bastante semelhantes quanto a sua forma. Na Figura 12 são apresentadas algumas curvas de compactação obtidas no ensaio normal de compactação com alguns solos brasileiros.

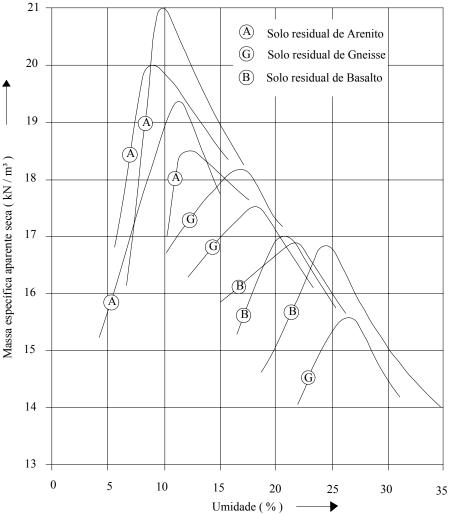


Figura 12: Curvas de compactação normal de alguns solos brasileiros Fonte: Adaptada de Vargas (1977)

2.2.4 Energias de Compactação

A energia de compactação usada no Ensaio de Proctor Normal (5,9 kg.cm/cm³), foi escolhida com o objetivo de aproximar a compactação de laboratório com a do campo, compatível com os equipamentos convencionais usados, normalmente nos serviços de terraplenagem. Calcula-se a energia de compactação através da seguinte fórmula:

$$E = \frac{P \cdot h_q \cdot N \cdot n}{V}$$
 Equação 4

Onde: E = energia de compactação (kg.cm/cm³); P = peso do soquete (kg); h_q = altura de queda do soquete (cm);

N = número de golpes por camada;

n = número de camadas;

V = volume do solo compactado (cm³).

Atualmente, com surgimento de equipamentos de compactação mais pesados, tornou-se necessário alterar as condições do ensaio visando manter a correlação com o esforço de compactação no campo. Com isso surgiu um novo ensaio, chamado Ensaio de Proctor Modificado, cuja energia de compactação aumentou para 25 kg.cm/cm³ (CAPUTO, 1988).

Massad (2003) salienta que a Energia de Proctor Modificada surgiu em função da Segunda Guerra (1939 – 1945), com o advento dos bombardeios pesados que necessitavam de pistas aeroportuárias com maior capacidade de suporte, o que se obteve com equipamentos mais pesados.

O Ensaio de Proctor Modificado é semelhante ao ensaio normal, porém a amostra é compactada em um cilindro maior e o ensaio é realizado em 5 camadas, sob a ação de 55 golpes de um peso de 4,5 kg, caindo de uma altura de 45 cm.

O Ensaio Intermediário de compactação, criado pelo Departamento Nacional de Estradas de Rodagem, difere do modificado apenas no número de golpes por camada, aplicando-se apenas 26 golpes.

Segundo Pinto (2002), os parâmetros de compactação dos solos ($\gamma_{dm\acute{a}x}$ e h_{ot}) determinados pelos Ensaios de Proctor, não são índices físicos, pois dependem da energia de compactação. Na Figura 13 se observa que quanto maior a energia maior será a massa específica aparente seca máxima e menor a umidade ótima do solo.

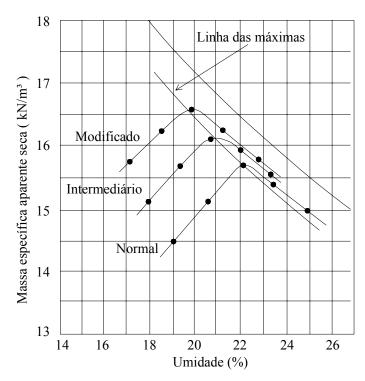


Figura 13: Curvas de compactação de um solo com diferentes energias Fonte: Adaptada de Pinto (2002)

Na compactação em campo, quando o solo se encontra muito úmido e há uma consistência na passagem de equipamentos compactadores, ocorre o fenômeno chamado de "borrachudo" (solo se comprime quando passa o equipamento e em seguida se dilata).

No Quadro 2 a seguir, são apresentadas as características dos equipamentos referentes às energias de compactação por impacto usadas nos ensaios de compactação.

Quadro 2: Energias de compactação por impacto Fonte: Massad (2003)

Altura de $N^{o} de$ $N^o de$ Volume do Energia Massa Designação cilindro (cm³) $(kg.cm/cm^3)$ (kg)queda (cm) camadas golpes **Proctor Normal** 26 1000 5,9 2,5 30,5 3 **Proctor Normal** 2000 4,5 45,7 5 12 6,2 Intermediária 5 4,5 45,7 26 2000 13,4 5 Proctor Modificado 4,5 55 2000 28,3 45,7

2.2.4 Compactação do solo em campo

Atualmente a compactação do solo em campo, compreende basicamente quatro atividades:

1) Escolha da área de empréstimo:

Nessa fase devem ser considerados alguns fatores de ordem técnico-econômico como: distância de transporte; características geotécnicas do material, volume de material disponível; teor de umidade natural (para acerto de umidade ótima).

2) Escavação, transporte e espalhamento do solo:

Na escavação do solo, deve-se ter cuidado com a drenagem (evitar a saturação do solo quando chove) e com a camada de solo orgânico na superfície. Depois de transportado, o solo é espalhado em camadas com espessura compatível com o equipamento compactador. A espessura de espalhamento também depende do tipo de solo, mas geralmente é em torno de 22 a 23 cm quando solto, resultando numa camada de 15 cm de solo compactado.

3) Acerto da umidade e homogeneização:

O acerto da umidade é feito através da irrigação ou aeração e em seguida, procede-se o revolvimento mecânico do solo de maneira a homogeneizá-lo com a umidade e destorroá-lo.

4) Compactação das camadas de solo:

A compactação propriamente dita, é realizada com equipamentos e parâmetros adequados ao tipo de solo utilizado, conforme apresentado no Quadro 3.

Os rolos pé-de-carneiros são os mais adequados para solos argilosos, pelo fato de penetrar na camada atingindo a parte inferior desta. Os rolos pneumáticos, por sua vez, são eficientes para uma grande variedade de solos, porém, o peso e a pressão nos pneus devem ser específicos para cada caso.

Quadro 3: Equipamentos de compactação

Fonte: Massad (2003)

Tipo	Solo	Modo de	Parâmetros de equipamentos			ntos
Tipo	5010	compactar	e (cm)	N	v (km/h)	p ou P
Rolo	Argila	De baixo	20 a 25	8 a 10	≤ 4	2000 a
pé-de-carneiro	ou silte	para cima	20 a 23	0 a 10	<u> </u>	3000 kPa
Rolo	Silte, areia	De cima	30 a 40	4 a 6	4 a 6	500 a
pneumático	com finos	para baixo	30 a 40	4 a 0	4 a 0	700 kPa
Rolo	Material	Vibração	60 a 100	2 a 40	≥ 8	50 a
Vibratório	granular	vioração	ου α 100	2 a 40	≥ 0	100 kN

Nota: e = espessura da camada de solo solto; N = número de passadas do rolo compactador; <math>v = velocidade do rolo compactador; p = pressão na pata ou do peso; P = peso do rolo vibratório.

2.2.6 Controle de compactação

Segundo Massad (2003) controlar a compactação de uma forma geral, significa verificar se o equipamento, a espessura das camadas, se o número de passadas e a velocidade do rolo, estão de acordo com as especificações.

O controle da compactação é realizado verificando-se o Grau de Compactação (GC) e o desvio de umidade (Δh) em relação à ótima, estão dentro dos limites especificados.

Chama-se grau de compactação (GC) ao quociente da massa específica aparente seca obtida no campo (γ_d (campo)), pela massa específica aparente seca máxima obtida em laboratório ($\gamma_{dmáx}$ (laboratório)):

$$GC = \frac{\gamma_d(campo)}{\gamma_{dm\acute{a}x}(laborat\acute{o}rio)} \times 100$$
 Equação 5

Desvio de umidade (Δh) é a diferença entre a umidade do solo compactado em campo (h_{campo}) e a umidade ótima obtida no laboratório (h_{ot}):

$$\Delta h = h_{campo} - h_{ot}$$
 Equação 6

2.3 PERMEABILIDADE DOS SOLOS

A água é um elemento comumente presente nos solos, ocupando parte ou a totalidade dos seus vazios. Quando este fluído fica submetido a diferenças de potenciais, desloca-se no interior do solo, originando tensões diferentes.

Pinto (2002) salienta que o estudo da percolação da água nos solos tem grande importância, uma vez que intervém em vários problemas práticos, como por exemplo: no cálculo de vazões (quantidade d'água que infiltra numa escavação); na análise de recalques (diminuição de vazios quando há expulsão de água); nos estudos de estabilidade (depende das pressões neutras); além dos estudos de fuga d'água de reservatórios (barragens de terra).

2.3.1 Determinação da permeabilidade dos solos

A permeabilidade de um solo é uma propriedade que indica o grau de facilidade deste permitir a percolação (deslocamento) da água, expresso numericamente pelo Coeficiente de Permeabilidade (k).

Segundo Lambe & Whitman (1974), a determinação da permeabilidade pode ser realizada em laboratório ou em campo. Quando a determinação for realizada em laboratório, esta se torna mais fácil do que realizá-la *in situ*. Porém, pelo fato da permeabilidade depender muito da estrutura do solo (tanto da microestrutura como da macroestrutura) e devido à dificuldade de se obter amostras de solo representativas, são necessárias determinações da permeabilidade média *in situ*. Desta maneira, os ensaios de laboratório permitem estudar a relação entre a permeabilidade e índice de vazios, que é realizado habitualmente quando não se dispõe de medidas de campo.

De acordo com Caputo (1988) o coeficiente de permeabilidade é determinado levando em consideração a Lei Experimental de Darcy (proposta em 1856 por esse engenheiro francês). Essa lei é válida apenas para um escoamento "laminar", tal como pode ser considerado o escoamento na maioria dos solos naturais.

A Lei de Darcy foi fundamentada a partir da percolação de água num permeâmetro, conforme visto na Figura 14. Ela é expressa pela seguinte equação:

$$Q = k \cdot \frac{h}{L} \cdot A$$
 Equação 7

Onde: $Q = vazão (cm^3/s)$;

A =área do permeâmetro (cm²);

k = coeficiente de permeabilidade (cm/s;)

h/L ou i = gradiente hidráulico.

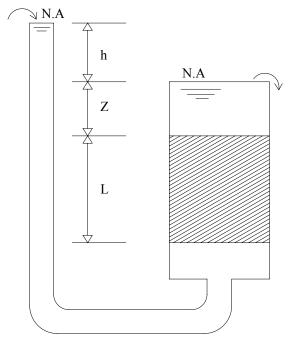


Figura 14: Água percolando num permeâmetro. Fonte: Pinto (2002)

Substituindo a relação h/L pela letra i e dividindo a vazão (Q) pela área (A) temos:

$$v = k \cdot i$$
 ou $k = v/i$

Equação 8

Onde: v = velocidade (cm/s);

k = coeficiente de permeabilidade (cm/s);

i = gradiente hidráulico.

Observa-se nestas expressões, que o coeficiente de permeabilidade representa a velocidade de percolação da água quando o gradiente hidráulico for igual a um (1).

A determinação do coeficiente de permeabilidade dos solos pode ser realizada pelos seguintes métodos:

a) Permeâmetro de carga constante: consiste num permeâmetro cuja carga h, é mantida por um certo tempo para que a água percole pelo solo e depois medida, conforme Figura 15. Assim pode-se calcular a vazão d'água e conhecendo-se as características geométricas do sistema, calcula-se o coeficiente de permeabilidade através da Lei de Darcy:

$$k = \frac{Q}{i \cdot A}$$
 Equação 9

Onde: k = coeficiente de permeabilidade (cm/s);

 $Q = vazão (cm^3/s);$

i = gradiente hidráulico;

 $A = \text{área (cm}^2).$

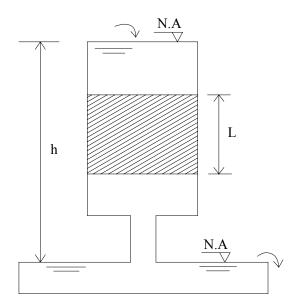


Figura 15: Esquema de permeâmetro de carga constante Fonte: Pinto (2002)

b) Permeâmetro de carga variável: Esse tipo de permeâmetro é usado em solos cujo coeficiente de permeabilidade é muito baixo (argilas). Na Figura 16 é apresentado um esquema desse permeâmetro. A vazão da água que passa pelo solo pode ser medida pela água que passa pela bureta. Nesse caso, o coeficiente de permeabilidade pode ser calculado pela equação:

$$k = 2,3 \cdot \frac{a \cdot L}{A \cdot t} \cdot \log \cdot \frac{h_0}{h_1}$$
 Equação 10

Onde: k = coeficiente de permeabilidade (cm/s);

a =área do tubo de carga (cm 2);

L = altura do corpo-de-prova (cm);

 $A = \text{área do corpo-de-prova (cm}^2);$

t = tempo de ensaio (s);

 h_0 = altura inicial d'água (cm);

 h_1 = altura final d'água (cm).

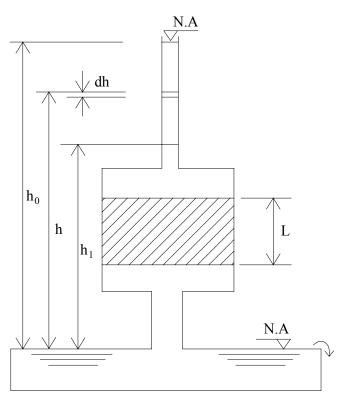


Figura 16: Esquema de permeâmetro de carga variável Fonte: Pinto (2002)

- c) Ensaios de campo: De acordo com Pinto (2002), pode-se medir o coeficiente de permeabilidade do solo através de um furo de sondagem de simples reconhecimento. Esse ensaio consiste em interromper a operação de perfuração, enchendo o tubo de revestimento com água, mantendo o seu nível (cheio). Mede-se então a vazão necessária para manter o nível d'água desejado, calculando assim o coeficiente de permeabilidade. Por assim se proceder, os ensaios de campo são considerados menos precisos que os de laboratório.
- d) Métodos indiretos: O coeficiente de permeabilidade também pode ser obtido por meio de ensaios de adensamento, realizados para o estudo de recalques e seu desenvolvimento ao longo do tempo. Sabendo-se a velocidade de recalque de um solo submetido a uma compressão, encontra-se a velocidade da água que sai dos vazios do solo, a qual depende do seu coeficiente de permeabilidade.

2.3.2 Fatores que influem na permeabilidade dos solos

Segundo Lambe & Whitman (1974), o valor da permeabilidade de um solo depende basicamente das características do fluído e do solo. A influência do fluído e do solo na permeabilidade pode ser representada pela equação a seguir, deduzida por Taylor (1948) a partir da Lei de Poiseuille:

$$k = D_s^{2} \cdot \frac{\gamma}{\mu} \cdot \frac{e^3}{(1+e)} \cdot C$$
 Equação 11

Onde: k = coeficiente de permeabilidade (cm/s);

 D_s = um diâmetro efetivo das partículas (cm);

 γ = massa específica do fluído (g/cm³);

 μ = viscosidade do fluído (g/cm.s)

e = relação de vazios

C = fator de forma

A equação seguinte representa a permeabilidade dos meios porosos e é conhecida como equação de Kozeny-Carman:

$$k = \frac{1}{k_0 \cdot S^2} \cdot \frac{\gamma}{\mu} \cdot \frac{e^3}{(1+e)}$$
 Equação 12

Onde: k_0 = fator que depende da forma dos poros e a relação entre a longitude da trajetória real do fluxo e espessura da camada atravessada.

 $S = \text{superficie específica (cm}^2).$

As Equações 11 e 12 mostram que tanto a viscosidade quanto a massa específica do fluído influenciam no valor da permeabilidade.

Quanto ao tipo de solo, a influência na permeabilidade dos solos, se dá em função de suas características, como: tamanho das partículas, índice de vazios, composição, estrutura e grau de saturação.

De acordo com Caputo (1988) o coeficiente de permeabilidade pode variar para o mesmo tipo de solo em função do seu índice de vazios e da temperatura do fluído (menor viscosidade). Quanto maior for a temperatura da água e o índice de vazios do solo, maior a facilidade com que ela escoa no interior do solo.

Pinto (2002) afirma que o coeficiente de permeabilidade de um solo não saturado é menor do que se ele estivesse totalmente saturado, uma vez que as bolhas de ar existentes constituem obstáculos ao fluxo da água.

A permeabilidade também é influenciada pela estrutura e anisotropia do solo, ou seja, depende da disposição relativa dos grãos. Quando o solo é compactado com baixa umidade, a disposição de suas partículas (estrutura floculada) favorece a passagem de água, enquanto que ao ser compactado mais úmido (estrutura dispersa), oferece maior dificuldade ao escoamento. Além disso, os solos são anisotrópicos com relação à permeabilidade, pelo fato de apresentarem coeficientes de permeabilidade maior na direção horizontal do que na vertical. Isso se dá em decorrência das partículas tenderem a ficar com suas maiores dimensões orientadas na posição horizontal.

2.3.3 Valores típicos de coeficientes de permeabilidade (k)

Os solos podem ser rapidamente classificados segundo seu grau de permeabilidade, conforme visto no Quadro 4 (LAMBE & WHITMAN, 1974):

Quadro 4: Classificação dos solos segundo seu coeficiente de permeabilidade Fonte: Lambe & Whitman (1974)

Grau de permeabilidade	Valor de k (cm/seg)
Elevada	Superior a 10 ⁻¹
Média	10 ⁻¹ a 10 ⁻³
Baixa	10 ⁻³ a 10 ⁻⁵
Muito baixa	$10^{-5} \text{ a } 10^{-7}$
Praticamente impermeável	Menor de 10 ⁻⁷

Pinto (2002) afirma que os coeficientes de permeabilidade são proporcionais aos vazios do solo e ao tamanho das partículas, ou seja, quanto menor for os vazios do solo e o tamanho das partículas, menor será o valor de k.

No Quadro 5, o referido autor apresenta os valores de permeabilidade para os solos sedimentares:

Quadro 5: Alguns valores típicos de coeficientes de permeabilidade Fonte: Pinto (2002)

Solos sedimentares	Valores
Argilas	$< 10^{-9} \text{ m/s}$
Siltes	$10^{-6} \text{ a } 10^{-9} \text{ m/s}$
Areias argilosas	10^{-7} m/s
Areias finas	10^{-5} m/s
Areias médias	10^{-4}m/s
Areias grossas	10^{-3} m/s

A Lei de Darcy não pode ser utilizada no cálculo de permeabilidade dos pedregulhos e areias grossas, uma vez que a velocidade de escoamento do fluído nestes materiais é bastante elevada, tornando o fluxo turbulento.

Sabe-se que o k depende não só do tipo de solo, mas também de sua estrutura e de sua compacidade ou consistência. Assim, por exemplo, uma areia grossa com finos pode ser menos permeável que uma areia fina uniforme.

De acordo com o autor referenciado anteriormente, os solos residuais e solos evoluídos apresentam estrutura com macroporos, nos quais a água percola com bastante facilidade. Porém, se estes materiais tiverem sua estrutura desfeita mecanicamente e em seguida compactada, o coeficiente de permeabilidade diminui consideravelmente.

2.4 RESISTÊNCIA AO CISALHAMENTO

2.4.1 Definição

A Mecânica dos Solos também estuda problemas de engenharia que envolve ruptura dos solos, como por exemplo: a estabilidade dos taludes de terra (aterros, cortes e barragens); os empuxos ativo e passivo sobre paredes de contenção e túneis; além da capacidade de carga de sapatas e estacas.

A ruptura dos solos geralmente é um fenômeno de cisalhamento e dificilmente ocorre devido a tensões de tração. Assim, a propriedade dos solos de suportar cargas e conservar sua estabilidade, depende da resistência ao cisalhamento.

Pinto (2002), define resistência ao cisalhamento do solo como sendo a máxima tensão de cisalhamento que ele pode suportar sem sofrer ruptura, ou a tensão de cisalhamento do solo no plano em que a ruptura estiver ocorrendo.

A superfície de ruptura de um solo se dá geralmente nos pontos de uma linha curva, onde a tensão ao cisalhamento excede o valor limite da resistência do material.

2.4.2 Parâmetros de resistência ao cisalhamento

A resistência ao cisalhamento de um solo é resultante da soma de duas parcelas ou componentes : coesão e atrito entre as partículas do material. Assim, a resistência do solo pode ser determinada pela equação de Coulomb, a seguir:

$$\tau = c' + \sigma \cdot tg\phi'$$
 Equação 13

Onde: τ = tensão cisalhante (kPa); c' = coesão (kPa); σ = tensão normal (kPa); tg = tangente φ'= ângulo de atrito (°)

Porém, levando em consideração que são as tensões efetivas que mobilizam a resistência de um solo, a equação acima deve ser escrita da seguinte forma:

$$\tau = c' + (\sigma - u) \cdot tg \phi'$$
 Equação 14

Sendo: u = pressão negativa da água ou poro-pressão.

2.4.2.1 Atrito

O atrito existente entre as partículas de um solo pode ser maior ou menor, em função do tipo de solo e de suas características físicas (granulometria) conferindo ao material determinada resistência ao deslizamento sobre um determinado plano.

A resistência resultante do atrito é definida como sendo a máxima tensão tangencial (τ) , proporcional à tensão normal (σ) , necessária para deslizar o corpo sólido no plano, conforme representado pela fórmula:

$$\tau = \sigma \cdot tg\phi'$$
 Equação 15

Na Figura 17 (a), observa-se que a resultante das tensões, tangencial e normal, forma com a normal um ângulo que é denominado ângulo de atrito (φ'). Esse ângulo é o máximo ângulo que a resultante pode ter com a normal, ao plano, sem haver deslizamento.

Pode-se dizer que a resistência ao deslizamento é diretamente proporcional à tensão, conforme é observado na Figura 17 (b).

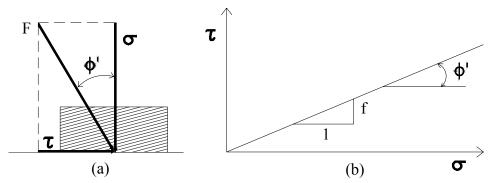


Figura 17: Esquema referente ao atrito entre dois corpos

- (a) resultante das tensões normal e cisalhante
- (b) tensão cisalhante x tensão normal

Fonte: Adaptada de Pinto (2002)

Pinto (2002) menciona que as forças transmitidas entre as partículas de argila são diferentes que nos grãos de areia. Nestes, as forças de contato são maiores expulsando a água da superfície, de tal forma que, há o contato direto entre os grãos. Já nas argilas, o número de partículas existentes é significativamente maior e, conseqüentemente as forças de contato são menores. Assim, estas forças não são suficientes para expulsar as moléculas de água adsorvida pelas partículas, ficando ela como responsável pela transmissão das forças. A Figura 18 mostra a diferença dos contatos entre as partículas de areia e argila.

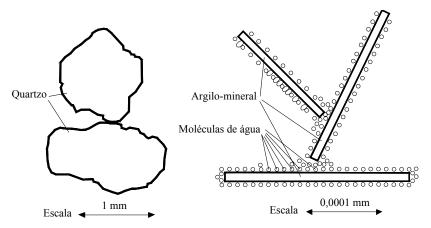


Figura 18: Transmissão de forças entre partículas de areia e de argilas Fonte: Pinto (2002)

2.4.2.2 Coesão

Embora a maior resistência ao cisalhamento dos solos seja resultante do atrito entre as partículas, existe uma pequena parcela correspondente à coesão (atração química entre as partículas). Ela funciona como uma cola unindo os dois corpos, independente da tensão normal resultante.

Segundo Pinto (2002), em solos sedimentares, a parcela de coesão é muito pequena, enquanto em solos evoluídos pedologicamente, a coesão é bastante significativa.

A coesão de um solo pode ser real ou aparente. A coesão aparente está presente em solos úmidos não saturados, a qual desaparece quando são saturados. Essa coesão é bem visível nas areias (exemplo das esculturas da praia), porém apresenta maior valor nos solos argilosos.

2.4.3 Critérios de ruptura

De acordo com Pinto (2002) existem dois critérios de ruptura que representam o comportamento dos solos: o critério de Coulomb e o de Mohr.

O critério de Coulomb estabelece que não existe ruptura se a tensão cisalhante não exceder um determinado valor, obtido da parcela correspondente à coesão (c'), somada ao produto do coeficiente de atrito (f) pela tensão normal (σ) existente no plano de cisalhamento ($\tau > c' + f \cdot \sigma$, sendo $f = tg \cdot \phi'$). Os parâmetros desse critério estão representados na Figura 19 (a).

O critério de Mohr estabelece que não existe ruptura enquanto o círculo representativo do estado de tensões, não se encostar na curva que representa a envoltória dos círculos referentes a estados de ruptura já observados. Na Figura 19 (b), observa-se à curva da envoltória de Mohr, um círculo de um estado de tensões sem ruptura (B) e um círculo de um estado de tensões com ruptura (A).

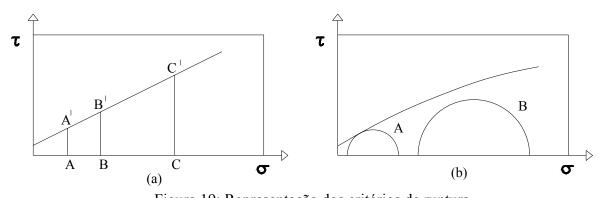


Figura 19: Representação dos critérios de ruptura

- (a) Coulomb
- (b) Mohr

Fonte: Pinto (2002)

Na Mecânica dos Solos, geralmente usa-se a expressão "Critério de Mohr-Coulomb", uma vez que traçando uma reta sobre a envoltória de Mohr, seu critério de resistência é semelhante ao de Coulomb.

2.4.4 Ensaios de cisalhamento dos solos

2.4.4.1 Ensaio de cisalhamento direto

Consiste no mais antigo ensaio para determinação da resistência ao cisalhamento de solos, levando em consideração o critério de Coulomb. Com o ensaio determina-se qual a tensão de cisalhamento capaz de provocar a ruptura de uma amostra de solo, colocada em uma caixa de cisalhamento composta de duas partes deslocáveis entre si, submetida a uma tensão normal resultante da força normal N conforme mostra a Figura 20 (a).

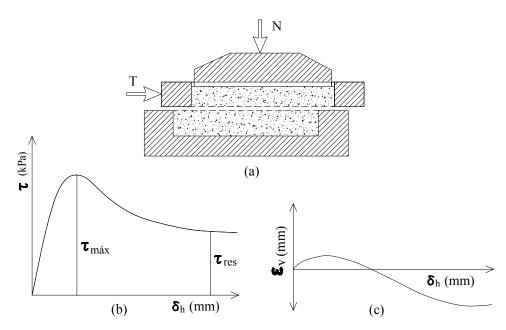


Figura 20: Ensaio de cisalhamento direto

- (a) esquema do equipamento
- (b) tensão cisalhante x deslocamento horizontal
- (c) deformação vertical x deslocamento horizontal

Fonte: Adaptada de Pinto (2002)

O corpo-de-prova de solo é colocado entre duas pedras porosas, uma superior e outra inferior, a fim de permitir a drenagem da amostra, quando o ensaio for drenado.

Tendo registrado as forças T e N, obtém-se as tensões σ e τ , dividindo as forças pela área da seção transversal do corpo-de-prova.

A tensão cisalhante (τ) pode ser representada em função do deslocamento horizontal como mostra a Figura 20 (b), onde são identificadas a tensão de ruptura ($\tau_{máx}$) e a tensão residual (τ_{res}) do solo.

No ensaio também é registrada a deformação vertical (deformação volumétrica) do solo durante o cisalhamento, representado em função do deslocamento horizontal, como pode ser verificado na Figura 20 (c).

Repetindo-se o ensaio para outras amostras, com diferentes tensões normais, obtém-se um conjunto de pares de valores (σ, τ) . Traça-se então a envoltória de resistência do solo, como se observa na Figura 19 (a). A partir do gráfico da Figura 19 (a) determina-se a coesão (c') e o ângulo de atrito (ϕ') do solo em estudo.

2.4.4.2 Ensaio de compressão triaxial

Este ensaio é considerado mais adequado e preciso que o de cisalhamento direto. Além disso, tem a vantagem de possibilitar a medição do módulo de elasticidade e do Coeficiente de Poisson.

Segundo Pinto (2002), o ensaio triaxial convencional consiste na colocação de um corpo-de-prova de solo dentro de uma câmara de ensaio, envolto por uma membrana de borracha. A câmara é enchida de água e em seguida pressionada, originando uma pressão chamada de pressão confinante de ensaio. Assim o corpo-de-prova é submetido a um estado hidrostático de tensões. Em seguida é aplicado o carregamento axial, através de um pistão que é introduzido na câmara, como esquematizado na Figura 21. A carga é medida através de um anel dinanométrico externo, ou por uma célula de carga acoplada no pistão.

Os ensaios triaxiais são classificados em três tipos, no que se refere às condições de drenagem: ensaio adensado drenado (CD); ensaio adensado não drenado (CU); e ensaio não adensado não drenado (UU).

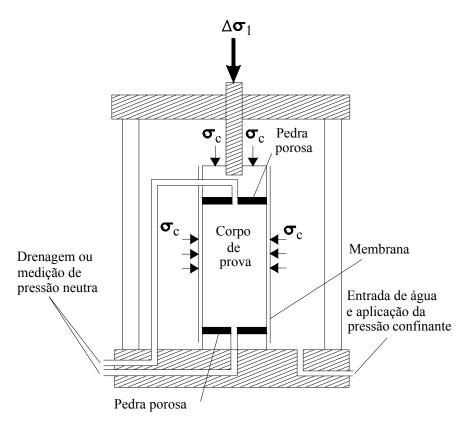


Figura 21: Esquema da câmara de ensaio triaxial

Fonte: Pinto (2002)

2.5 ESTUDO DE CARACTERIZAÇÃO GEOTÉCNICA NO RS

É importante salientar neste trabalho, o estudo realizado por Gehling, Rolsenberg & Dias (1981), visando à caracterização geotécnica dos solos no planalto meridional do RS, em especial na região de Passo Fundo (28°-29° sul e 52°-53° oeste de Greenwich), abrangendo uma área de 10.000 km².

A referida área estudada, caracteriza-se pela ocorrência de rochas vulcânicas da Formação Serra Geral e uma camada sedimentar sobreposta, pertencente à Formação Tupanciretã.

Os solos da Formação Tupanciretã apresentam grande fração de areia e possuem boa drenagem, propiciando a formação de voçorocas (solos erodíveis). Já os solos residuais de basalto, apresentam textura argilosa de cor vermelha escura, com uma drenagem bem desenvolvida.

No estudo desenvolvido pelos autores citados anteriormente, foram realizados os seguintes ensaios: densidade real dos grãos; análise granulométrica; limites de consistência; compactação; índice de suporte Califórnia; cisalhamento direto e difratogramas de raio-x, cujos resultados são apresentados no Anexo 1.

3 METODOLOGIA

3.1 CLASSIFICAÇÃO DO ESTUDO

O presente estudo teve como finalidade pesquisar as características físicas, mecânicas e hidráulicas do solo residual de basalto de quatros locais previamente determinados da região Noroeste do RS.

A pesquisa realizada caracterizou-se como sendo do tipo: bibliográfica, quantitativa e descritiva, uma vez que se realizou uma revisão literária sobre o tema, coleta de amostras de solo em campo, ensaios com o material em laboratório e, posteriormente, análise e descrição dos resultados numéricos obtidos.

3.2 PLANO DE COLETA DE DADOS

Os ensaios necessários para a realização do estudo foram desenvolvidos no LEC - Laboratório de Engenharia Civil - UNIJUÍ, utilizando como material de pesquisa o solo residual de basalto coletado em quatro locais distintos da região Noroeste do RS. Para facilitar a identificação, as quatro amostras de solo foram denominadas da seguinte forma: Solo A, Solo B, Solo C e Solo D.

A escolha dos locais de coleta das amostras se deu pelos seguintes motivos:

- O Solo A foi escolhido em função de ter sido objeto de estudo em pesquisas realizadas anteriormente;
- Os Solos B, C e D foram determinados em função dos locais de coleta localizar-se próximos de rios, nos quais há possibilidade de implantação de obras hidráulicas;
- Entende-se que as amostras de solo utilizadas representam o "horizonte B" do solo residual de basalto da região.

Os ensaios realizados com as amostras do Solo B, C e D são:

- 1) Ensaios de granulometria;
- 2) Ensaios de massa específica real dos grãos;
- 3) Ensaios dos índices de consistência ou "Limites de Atterberg" (LL, LP, IP);
- 4) Ensaios de compactação normal ou "Ensaio de Proctor";
- 5) Ensaios de permeabilidade com permeâmetro de carga variável;
- 6) Ensaios de cisalhamento direto (30, 60, 100 e 200 kPa para cada solo).

Quanto ao Solo A, realizou-se apenas o ensaio de permeabilidade e massa específica real dos grãos, pelo fato deste solo já ter sido objeto de estudo em outras pesquisas (BONAFÉ et al, 2003; BONAFÉ, 2004; e VIECILI, 2003), nas quais buscaram-se os resultados referentes aos demais ensaios citados anteriormente.

3.2.1 Caracterização física

A caracterização física das amostras de solo em estudo se deu através de ensaios de granulometria, massa específica real dos grãos e índices de consistência, conforme pode ser observado no Quadro 6.

Quadro 6: Resumo dos ensaios de caracterização física

Ensaio	Amostra	Granulometria	Massa espec. real	Limites de consistência
01	Solo A	*	2 determinação	*
02	Solo B	2 determinação	2 determinação	1 determinação
03	Solo C	2 determinação	2 determinação	1 determinação
04	Solo D	2 determinação	2 determinação	1 determinação

Nota: * Obtido em Viecili (2003)

3.2.2 Compactação

Para realização dos ensaios de compactação foram realizados três conjuntos de ensaios, conforme apresentado no Quadro 7.

Quadro 7: Resumo dos ensaios de compactação

Ensaio	Amostra	Energia de compactação
*	Solo A	Normal
01	Solo B	Normal
02	Solo C	Normal
03	Solo D	Normal

Nota: * Obtido em Bonafé (2003)

3.2.3 Permeabilidade

Para o estudo da permeabilidade foram realizados quatro ensaios, um para cada amostra de solo, como mostra o Quadro 8.

Quadro 8: Resumo dos ensaios de permeabilidade

Ensaio	Amostra	Permeâmetro
01	Solo A	Carga variável
02	Solo B	Carga variável
03	Solo C	Carga variável
04	Solo D	Carga variável

3.2.4 Cisalhamento direto

Para o estudo da resistência ao cisalhamento dos solos foram preparados 12 corpos-deprova, considerando a umidade ótima obtida a partir da energia de compactação normal, a fim de atingir a massa específica aparente seca máxima. No Quadro 9 é apresentado um resumo dos ensaios de cisalhamento direto, os quais foram realizados com velocidade cisalhante de 0,031mm/min.

Quadro 9: Resumo dos ensaios de cisalhamento direto

Ensaio	Amostra	$\sigma(kPa)$
01	Solo B	30
02	Solo B	60
03	Solo B	100
04	Solo B	200
05	Solo C	30
06	Solo C	60
07	Solo C	100
08	Solo C	200
09	Solo D	30
10	Solo D	60
11	Solo D	100
12	Solo D	200

3.3 MATERIAIS UTILIZADOS

Para a realização desse estudo, foram utilizadas quatro amostras de solo, denominadas da seguinte forma: Solo A, Solo B, Solo C e Solo D. A seguir são descritas as localizações da coleta desses solos:

- □ Solo A: coletado no Campus da UNIJUÍ, situado no perímetro urbano do município de Ijuí RS, coordenadas UTM 211052 e 6856016;
- □ <u>Solo B:</u> coletado na localidade de Chorão, situado no interior do município de Ijuí − RS, coordenadas UTM 214019 e 6866147;
- □ Solo C: coletado na localidade de Barreiro, situado no interior do município de Ijuí − RS, coordenadas UTM 212587 e 6846709;
- □ Solo D: coletado na localidade de Esquina Renz, situado no interior do município de Augusto Pestana RS, coordenadas UTM 785030 e 6836168.

Na Figura 22 é apresentado um mapa delimitando as províncias geomorfológicas com destaque para a Formação Serra Geral. Também é localizada a região de coleta das amostras de solo residual de basalto.

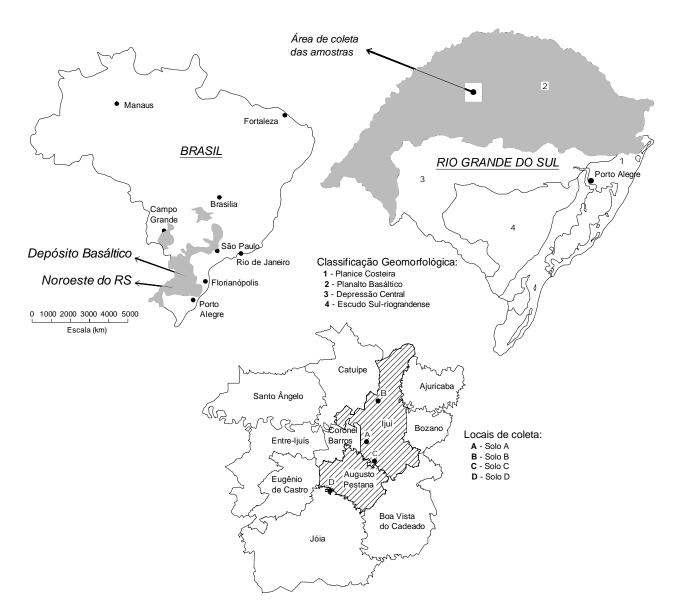


Figura 22: Localização dos pontos de coleta das amostras Fonte: Adaptada de Specht (2004)

A coleta das amostras de solo em campo seguiu as etapas descritas abaixo:

- a) Escolha de um local com presença de solo residual de basalto e possibilidade de construção de barragens de terra, ou seja, nas proximidades de rios;
- b) Remoção da camada superficial do solo escavando aproximadamente 25 cm, com auxílio de ferramentas manuais (pá-de-corte, paceta);

- c) Escavação e coleta da amostra de solo (≅ 80 kg) de cada local em sacos plásticos;
- d) Coleta de uma porção de solo (≅1 kg) em sacos impermeáveis para determinação da umidade natural;
- e) Estocagem e secagem das amostras no LEC Laboratório de Engenharia Civil UNIJUÍ, para posterior preparação do solo de acordo com as especificações das normas pertinentes e/ou técnicas consolidadas para cada ensaio a ser realizado.

A Figura 23 representa o procedimento da coleta das amostras de solo em campo.

Figura 23: Coleta das amostras de solo

É importante ressaltar que os ensaios foram realizados utilizando equipamentos e técnicas já consolidadas, de acordo com as especificações das normas técnicas pertinentes, considerando a energia de compactação normal. Além disso, os ensaios se procederam com amostras deformadas, exigindo a moldagem dos corpos-de-prova em laboratório.

Antes de proceder qualquer ensaio, as amostras de solos foram secadas ao ar e, em seguida, passaram pelo processo de destorroamento, seguindo as orientações técnicas da NBR 6457/86 – Preparação para ensaio de compactação e ensaios de caracterização.

3.4 PROCEDIMENTOS DE ENSAIOS E DESCRIÇÃO DE EQUIPAMENTOS

3.4.1 Ensaios de caracterização física

Os procedimentos dos ensaios de caracterização física dos materiais utilizados neste estudo serão descritos a seguir.

3.4.1.1 Granulometria

Sabe-se que os solos são constituídos de partículas com diversos tamanhos, tornando-se difícil uma identificação tátil-visual. Por isso é necessária uma análise granulométrica, que é realizada a partir de ensaios de granulometria. No caso dos solos argilosos (solo em estudo) o ensaio consiste em duas fases: (a) Peneiramento e (b) Sedimentação.

O peneiramento é usado para determinação da granulometria da parcela mais grossa do solo, ou seja, superior a peneira nº 200, cuja abertura é de 0,074mm. Enquanto na sedimentação, determina-se a distribuição granulométrica da fração mais fina do material, isto é, com tamanho dos grãos inferior a abertura da peneira nº 200.

(a) Peneiramento:

O peneiramento consiste na técnica de passar uma determinada quantidade de solo (em torno de 1.000g) em um conjunto de peneiras com abertura das malhas padronizadas. No presente estudo foram utilizadas as seguintes peneiras: ½" (12,7mm); 3/8" (9,5mm); nº 4 (4,76); nº 10 (2,0mm); nº 30 (0,59mm); nº 40 (0,42mm); nº 50 (0,297mm); nº 100 (0,149mm); e nº 200 (0,074mm).

No peneiramento determina-se a porcentagem do material que fica retido em cada peneira do conjunto, de forma decrescente (da maior para menor), possibilitando ao mesmo tempo a determinação da parcela de solo que passa. Dessa forma é possível representar

graficamente a "porcentagem passante *versus* abertura da peneira (mm)", esta em escala logarítmica. Considera-se então, que o diâmetro dos grãos é equivalente a abertura das peneiras pela qual o material passa.

(b) Sedimentação:

A sedimentação é baseada na Lei de Stokes, a qual diz que: a velocidade (ν) de queda de partículas esféricas num fluido atinge um valor limite que depende da massa especifica do material da esfera (γ s), da massa específica do fluido (γ w), da viscosidade do fluido (μ), e do diâmetro da esfera (D), conforme a expressão:

$$v = \frac{\gamma_s - \gamma_w}{18 \cdot \mu} \cdot D^2$$
 Equação 16

Essa técnica consiste em colocar uma certa quantidade de solo dispersa num frasco de água (100 g de solo em um litro de água) contendo um agente antifloculante (defloculante), durante 24 horas com a finalidade de desagregar as partículas de solo, para que estas ficam em suspensão na água. Depois, a solução é agitada durante um determinado tempo, conforme especificações da NBR 7181/84, e em seguida colocada em repouso.

Dessa forma as partículas cairão sob a ação da gravidade com velocidades uniformes, dependentes da massa e da forma das partículas. Admitindo-se que estas possuem formas esféricas, a velocidade de queda será proporcional ao quadrado do diâmetro das partículas

Na Figura 24, mostra-se um esquema do processo de sedimentação. No lado esquerdo do frasco, observa-se os grãos com diferentes diâmetros dispersos ao longo da altura do fluido, no início do ensaio; enquanto no lado direito, pode ser visto a situação depois de decorrido um certo tempo.

Logo após ser colocada em repouso, a densidade é igual ao longo da altura do frasco e, depois de um determinado instante, começa a diminuir, em função das partículas maiores tenderem a cair mais rápido que as menores. A variação da densidade é medida com um densímetro, em intervalos de tempo pré-determinados.

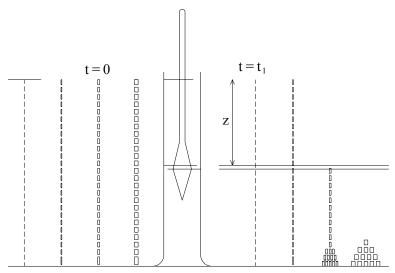


Figura 24: Esquema representativo da sedimentação Fonte: Pinto (2002)

Conhecendo-se as densidades em diferentes intervalos de tempo, determina-se a porcentagem de grãos com mesmo diâmetro, através da relação entre a densidade medida e a densidade inicial.

Salienta-se que na sedimentação também é determinado um diâmetro equivalente ao de uma esfera que sedimenta com velocidade igual a da partícula de solo.

Na Figura 25, é possível visualizar os ensaios de granulometria por sedimentação, sendo realizados em laboratório.

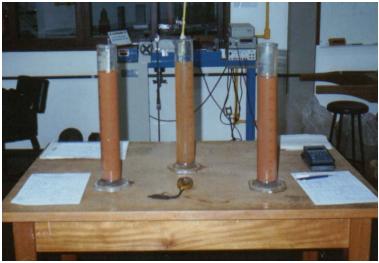


Figura 25: Ensaio de granulometria por sedimentação

3.4.1.2 Massa específica real dos grãos

A massa específica real é uma característica que expressa a relação entre a massa e o volume das partículas sólidas. É representada pelo símbolo γ_s .

É determinada em laboratório com auxílio de um picnômetro com água (destilada), no interior do qual é colocada uma determinada quantidade de solo seco, determinando o volume de água deslocado do recipiente, que por sua vez expressa o volume do material. Com a massa e o volume do solo, calcula-se a massa específica real dos grãos, através da equação:

$$\gamma_s = \frac{P_s}{V_s}$$
 Equação 17

Onde: γ_s = massa específica real dos grãos (kN/m³)

 P_s = massa de solo seco(kg)

 V_s = volume dos grãos do solo(m³)

Foram realizados dois ensaios para cada amostra de solo, utilizando portanto dois picnômetros previamente calibrados, a fim de obter maior precisão nos resultados. Além disso, vale destacar que foram feitas 5 leituras (massa (g) e temperatura (°C)) para cada

ensaio, nas seguintes temperaturas: $\cong 20$ °C, $\cong 30$ °C, $\cong 40$ °C, $\cong 50$ °C e $\cong 60$ °C; elevadas em banho-maria.

Segundo Pinto (2002), a massa específica real dos solos tem pequena variação e por isso torna-se difícil a sua identificação através desta propriedade. Porém, essa característica física é necessária para o cálculo de outros índices. Geralmente os valores situam-se em torno de 27 kN/m³, cujo número é adotado quando não se dispõe do valor específico do solo em estudo.

A determinação da massa específica real em laboratório, seguiu as prescrições da NBR 6457/86 — Preparação para ensaios de compactação e caracterização e da NBR 6508/84 — Grãos de solo que passam na peneira de 4,8 mm — Determinação da massa específica (Método de ensaio). Salienta-se que essa determinação foi realizada utilizando o solo passante na peneira nº 10, de acordo técnicas usuais do laboratório.

3.4.1.3 Índices de consistência ou Limites de Atterberg

Os solos argilosos quando apresentam bastante umidade, se comportam como um líquido; enquanto ao perder parte da água, ficam plásticos; tornando-se quebradiços quando estão mais secos. Os limites que determinam cada uma dessas fases de comportamento são chamados de Índices de consistência, os quais são determinados através dos ensaios de limite de liquidez (LL) e limite de plasticidade (LP).

A diferença entre os dois limites (LL e LP) expressa o índice de plasticidade (IP), o qual indica a faixa de valores em que o solo se apresenta plástico.

As amostras de solo necessário para a realização dos ensaios de LL e LP foram preparadas de acordo a NBR 6457/86 — Preparação para ensaios de compactação e caracterização.

O procedimento de ensaio de limite de liquidez padronizado pela ABNT, seguiu as instruções da NBR 6459/84. Esse ensaio consiste na técnica de determinar o teor de umidade de um solo necessário para fechar uma ranhura, com exatamente 25 golpes, na concha do

aparelho de Casagrande. Salienta-se que são realizadas diversas tentativas (no mínimo 6), cada uma com diferente teor de umidade, sempre registrando o número de golpes executados para fechar a ranhura. Interpolando esses dados, determina-se o valor de LL, correspondente aos 25 golpes.

O procedimento do ensaio de limite de plasticidade seguiu as prescrições da NBR 7180/84. Consiste em determinar o menor teor de umidade com o qual se consegue moldar um corpo-de-prova cilíndrico com 3 mm de espessura, rolando o solo com a palma da mão. Neste caso, também são realizadas várias tentativas, como forma de obter maior precisão nos resultados.

Conforme Caputo (1981), os solos poderão ser classificados em:

- □ Fracamente plásticos $\rightarrow 1 < IP < 7$
- □ Medianamente plástico \rightarrow 7 < IP < 15
- □ Altamente plástico \rightarrow IP >15

No Quadro 10 são apresentados alguns resultados típicos de solos brasileiros, inclusive o solo residual de basalto.

Quadro 10: Índices de consistência de alguns solos brasileiros Fonte: Pinto (2002)

Solos	LL (%)	IP (%)
Residual de arenito (arenosos finos)	29 – 44	11 - 20
Residual de gnaisse	45 – 55	20 - 25
Residual de basalto	45 - 70	20 - 30
Residual de granito	45 –55	14 - 18
Argilas orgânicas de várzeas quaternárias	70	30
Argilas orgânicas de baixadas litorâneas	120	80
Argila porosa vermelha de São Paulo	65 a 85	25 a 40
Argilas variegadas de São Paulo	40 a 80	15 a 45
Areias argilosas variegadas de São Paulo	20 a 40	5 a 15
Argilas duras, cinzas, de São Paulo	64	42

Pinto (2002) salienta que os índices de consistência demonstram a influência das partículas finas de argila no comportamento do solo. Além disso, afirma que pequenos teores de argila e altos índices de consistência indicam que a argila é muito ativa. Para determinar a

atividade da fração argila de um solo, os índices de consistência (IP) devem ser comparados com a fração de argila existente. O índice de atividade (IA) de uma argila é definida pela equação:

$$IA = IP / fração argila (< 0.002 mm)$$

Equação 18

É considerada normal a argila que apresenta um valor de IA situado entre 0,75 e 1,25. Se o valor é menor que 0,75, a argila é considerada inativa quando for maior que 1,25, considera-se ativa.

3.4.2 Classificação dos solos

O solo quando for objeto de pesquisa, necessita ser identificado e classificado para possibilitar a realização de outros ensaios, a fim de determinar as demais propriedades, como por exemplo, as características mecânicas e hidráulicas. Além disso, todos os cálculos para dimensionamento de qualquer projeto de engenharia geotécnica são baseados nas propriedades específicas da classe a que pertence o solo em estudo. Assim, entende-se a real importância da classificação dos materiais a partir das propriedades-índices.

A classificação das amostras de solos foi realizada segundo três sistemas: classificação triangular, unificada e rodoviária, a partir dos resultados obtidos das análises granulométricas. Estas, por sua vez seguiram as escalas granulométricas padronizadas pela ABNT.

3.4.2.1 Triangular do B.P.R (Bureau of Public Roads)

O sistema de classificação triangular é mais usado por engenheiros rodoviários, para fins de pavimentação. Consiste em determinar o ponto de interseção de três linhas traçadas paralelamente aos lados do triângulo eqüilátero, as quais correspondem a porcentagem de pedregulho + areia; silte e argila, respectivamente.

O triângulo equilátero representa um diagrama triangular com três variáveis (% argila, % silte e % areia). O ponto do diagrama, determinado pelas coordenadas triangulares que representam as frações obtidas na análise granulométrica, identifica o tipo de solo em estudo.

Na Figura 26 é apresentado um triângulo (diagrama) para classificação dos solos pelo sistema triangular.

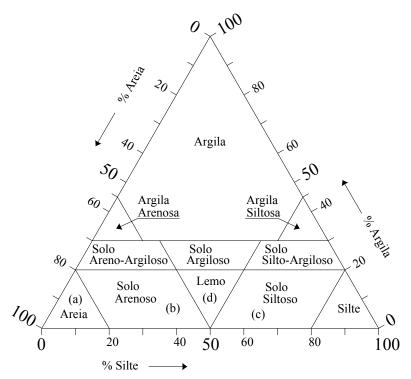


Figura 26: Classificação triangular do B.P.R. Fonte: Adaptada de Vargas (1977)

3.4.2.2 Unificada

Este sistema de classificação é o mais utilizado em estudos geotécnicos voltados para barragem de terra. Foi desenvolvido pelo professor Casagrande para fins de obras aeroportuárias. Nesse sistema é adotada a terminologia apresentada no Quadro 11.

O referido sistema considera a porcentagem de finos (menor que 0,075 mm) presentes no solo. Se esse valor for inferior a 50%, o solo é considerado como sendo de granulação

grosseira, ou seja, pedregulho (G) ou areia (S). Quando a porcentagem for superior a 50%, o solo é considerado de granulação fina: silte (M), argila (C) ou solo orgânico (O).

Quadro 11: Terminologia do sistema unificado Fonte: Pinto (2002)

Pedregulho
Areia
Silte
Argila
Solo orgânico
Bem graduado
Mal graduado
Alta compressibilidade
Baixa compressibilidade
Turfas

Assim, as quatro amostras de solo em estudo foram classificadas de acordo com o esquema de classificação pelo sistema unificado apresentado no Quadro 12.

Quadro 12: Esquema para classificação pelo sistema unificado Fonte: Pinto (2002)

		% P #200 < 5	GW CNU > 4 e 1 < CC < 3				
		% P #200 < 5	GP CNU < 4 ou 1 > CC > 3				
	G > S : G		% P #200 > 12	GC GC			
			% F #200 / 12	GM GM			
			5 < #200 < 12	GW-GC, GP-GM, etc.			
% P #200 < 50			% P #200 < 5	SW CNU > 6 e 1 < CC < 3			
	S > G : S		% P #200 < 5	SP CNU < 6 ou 1 > CC > 3			
			% P #200 > 12	SC SC			
						78 1 #200 > 12	SM SM
			5 < #200 < 12	SW-SC, SP-SC, etc.			
	С	CL	IP [58			
	СН			СН			
% P #200 > 50	% P #200 > 50 M	ML		ОН			
	MH		CL OI MH				
	OL	7	OL MH				
	0	ОН	20	50 100			

3.4.2.3 Rodoviária

Essa classificação é mais usada em estudos voltados para a engenharia rodoviária, tendo origem nos Estados Unidos. É semelhante à classificação unificada, porém são considerados solos de granulação grosseira, aqueles que têm menos de 35% de material passando na peneira nº 200. Estes solos pertencem a um dos seguintes grupos: A-1, A-2 ou A-3. Por outro lado, os solos com mais de 35% passante na peneira nº 200, formam os grupos A-4, A-5, A-6 e A-7.

Dessa forma, os solos em estudo foram classificados de acordo com o esquema de classificação pelo sistema rodoviário, apresentado no Quadro 13.

Quadro 13: Esquema de classificação pelo sistema rodoviário Fonte: Pinto (2002)

		% P#10 2,0mm	% P#4 0,42m		P#200 75mm	ΙΡ	
	A-1a	<50	<30	<15	5	<6	
	A-1b		<50	<25	ō	<6	
	A-3		>50	<10)	NP	
	A-2		IP				
% P #200 < 35		A-2-4	_				
		A-2-5	_				
		A-2-6	- 10	A 2-6	А	2-7	
		A-2-7		A 2-4		2-5	L
	A-4	IP					
	A-5			A 7-6			
% P #200 > 35	A-6	-			A 7-5		
	A-7-5	10	A 6				
	A-7-6		A 4	40 A 5	Ď.		

3.4.3 Ensaio de compactação

Com o ensaio de Proctor determinou-se a curva de umidade *versus* massa específica aparente, de onde se obtém a umidade ótima (h_{ot}) e a massa específica aparente seca máxima ($\gamma_{dm\acute{a}x}$) do solo em estudo.

O ensaio consiste em compactar a amostra de solo num molde cilíndrico de dimensões padronizadas, com porcentagens crescentes de umidade. Essa compactação é realizada em camadas, aplicando um determinado número de golpes em cada seção, com soquete de dimensões, peso e altura de queda especificados em norma (NBR 7182/86).

É realizado normalmente com cinco porções de 2.500 g de solo destorroado passante na peneira nº 10 de acordo com especificações da NBR 6457/86. Adiciona-se água, de forma conveniente, homogeneizando-a com o solo, a fim de obter pontos com umidade abaixo e acima da umidade ótima. Para isso é necessário um corpo-de-prova para cada porcentagem de umidade, o qual é moldado em camadas iguais sob uma determinada energia de compactação, de forma que a amostra exceda em 1 cm a face superior do molde. Após, retira-se o excesso de material com auxílio de uma régua metálica. Em seguida, pesa-se o conjunto molde + amostra em balança apropriada. Extrai-se a amostra do molde com extrator hidráulico para determinar a umidade do solo e calcular a massa específica aparente seca máxima.

No presente estudo, os ensaios foram realizados na energia normal seguindo a NBR 7182/86. Esta norma especifica para a referida energia, o uso do cilindro pequeno (diâmetro de 10 cm e altura de 12,73 cm) e do soquete metálico pequeno com massa de 2.500 g caindo de uma altura de 30,5 cm, aplicando na amostra 26 golpes distribuídos em 3 camadas iguais.

Na Figura 27 visualiza-se o ensaio de compactação com energia normal, sendo realizado no laboratório.

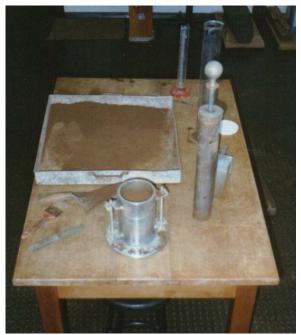


Figura 27: Ensaio de compactação realizado no laboratório

3.4.4 Ensaio de permeabilidade

A permeabilidade de um solo depende do seu coeficiente de permeabilidade ou condutividade hidráulica (k). Para a determinação desse coeficiente foram realizados quatro ensaios, um para cada amostra de Solo (A, B, C e D), por meio do equipamento denominado "permeâmetro de carga variável". O ensaio foi realizado de acordo as técnicas descritas por Head (1981). É importante salientar que os solos foram moldados na umidade ótima, determinada através do ensaio de compactação.

O ensaio de permeabilidade consiste em moldar um corpo-de-prova de solo, com auxílio de um molde cilíndrico utilizando uma determinada energia de compactação (nesse caso, energia normal). Em seguida, insere-se o corpo-de-prova em um recipiente com água durante noventa e seis horas, com a finalidade de saturá-lo, ou seja, a fim de eliminar os vazios de ar presentes no solo.

Decorrida as noventa e seis horas o corpo-de-prova é colocado dentro de uma cuba com água, de tal forma que a parte inferior do cilindro permaneça submersa. Após, a amostra é submetida à pressão de vácuo durante duas horas, conforme se observa na Figura 28.

Figura 28: Corpo-de-prova dentro da cuba, conectado a bomba de vácuo. Fonte: Wallau (2004)

A aplicação do vácuo tem como finalidade retirar todo o ar da amostra, para que durante o ensaio a água não encontre resistência nos caminhos por onde percola.

Posteriormente, inicia-se o ensaio propriamente dito, onde o corpo-de-prova é interligado em uma coluna de água (permeâmetro de carga variável), verificando a altura da coluna até a lâmina superior de água contida na cuba, conforme Figura 29.

Depois de preparado o ensaio, realiza-se a medição do tempo em que uma determinada quantidade de água leva para percolar na amostra. Além disso, é necessário medir a temperatura da água para fazer a correção do valor de k em função da viscosidade do fluido. Uma vez conhecidas as medidas da amostra, o tempo de percolação, as alturas da coluna d'água e a área do tubo de carga, calcula-se o coeficiente de permeabilidade (k), por meio da Equação 10, citada no item 2.3.1 – Determinação da permeabilidade dos solos.



Figura 29: Corpo-de-prova submetido à carga d'água da coluna.

A correção do coeficiente de permeabilidade é feita multiplicando-se o valor de k encontrado através da Equação 10, pelo coeficiente da viscosidade da água, apresentado no Quadro 14.

Quadro 14: Viscosidade da água em função da variação de temperatura

Temperatura (°C)	μ/μ_{20}	Temperatura (°C)	μ/μ_{20}
10	1,298	22	0,952
12	1,227	24	0,908
14	1,165	26	0,867
16	1,106	28	0,828
18	1,051	30	0,793
20	1,000	-	-

3.4.5 Ensaio de cisalhamento direto

O ensaio de cisalhamento direto foi realizado com base nas técnicas usuais no LEC (Laboratório de Engenharia Civil), as quais são descritas por Head (1981)

A amostra de solo, depois de moldada, é colocada numa caixa de cisalhamento constituída de duas partes, conforme mostra a Figura 30. Uma das partes permanece fixa, enquanto que a outra é movimentada horizontalmente quando submetida a uma força tangencial (T), provocando tensões cisalhantes no solo. Durante o ensaio é mantida uma tensão normal na amostra, resultante de uma carga vertical (N)

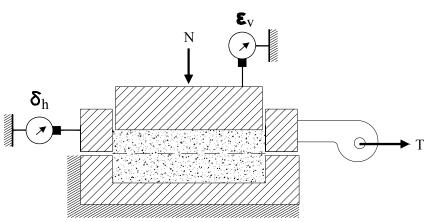


Figura 30: Esquema do ensaio de cisalhamento direto Fonte: Adaptada de Machado (1997)

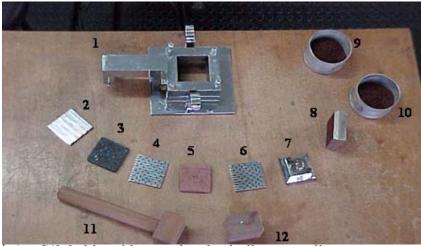
Quando o corpo-de-prova é colocado na caixa de cisalhamento, deve-se usar pedra porosa na sua face superior e inferior, permitindo a drenagem do material durante o ensaio.

Deve-se salientar que, neste estudo, os corpos-de-prova foram moldados na umidade ótima obtendo a densidade aparente seca máxima, determinada no ensaio de compactação.

Para a confecção dos corpos-de-prova foram seguidas as seguintes etapas:

1) Destorroamento do solo e passagem deste na peneira nº 40;

- 2) Cálculo e pesagem da quantidade de solo necessária para a moldagem dos corposde-prova com densidade aparente máxima;
- 3) Adição da água correspondente à umidade ótima do solo e homogeneização dos dois materiais:
- 4) Moldagem da amostra no molde (vazador) utilizando toda a quantidade de solo prédeterminada, a fim de obter um corpo-de-prova cúbico com as seguintes dimensões: 5,05 x 5,05 x 1,97 cm.
- 5) Extração do corpo-de-prova do molde (vazador) e montagem deste na caixa de cisalhamento.


Na Figura 31 podem ser observados os acessórios do equipamento de cisalhamento direto.

A sequência de montagem da amostra na célula de cisalhamento direto é descrita abaixo, considerando os acessórios da Figura 31:

- 1°) Colocar o fundo metálico removível (2) na célula bipartida (1);
- 2°) Sobre o fundo metálico colocar a placa metálica perfurada (4);
- 3°) Sobrepor a pedra porosa (3);
- 4°) Extrair a amostra do vazador (8) e colocar sobre a pedra porosa;
- 5°) Sobrepor outra pedra porosa (5);
- 6°) Inserir outra placa metálica perfurada (6);
- 7°) E por fim, acoplar a tampa de compressão com a esfera de aço (7).

Durante a realização do ensaio, cada corpo-de-prova é submetido a uma tensão normal constante (30, 60, 100 e 200 kPa), com o objetivo de determinar alguns pares de tensões (cisalhante x normal) na ruptura da amostra.

O ensaio permite três leituras: deslocamento horizontal (δ_h) , força cisalhante (T) e deformação vertical (ϵ_v) , a qual fornece a variação de volume (deformação volumétrica) do corpo-de-prova. Na Figura 32 é mostrado o equipamento de cisalhamento direto preparado para ensaio.

- 1- Célula bipartida ou caixa de cisalhamento direto;
- 2- Fundo metálico removível;
- 3- Pedra porosa;
- 4- Placa metálica perfurada;
- 5- Pedra porosa;
- 6- Placa metálica perfurada;
- 7- Tampa de compressão da carga normal com esfera de aço;
- 8- Vazador (5,05 x 5,05 x 1,97 cm) contendo a amostra;
- 9- Cápsula contendo amostra de solo;
- 10-Cápsula contendo a amostra de solo;
- 11- Martelo de madeira;
- 12-Tarugo de madeira.

Figura 31: Acessórios do equipamento de cisalhamento direto Fonte: Bonafé (2004)

Figura 32: Equipamento de cisalhamento direto Fonte: Bonafé (2004)

4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

No presente capítulo são apresentados e analisados os resultados obtidos nos ensaios realizados para classificação e caracterização das amostras de solo e, em especial, dos ensaios de compactação, permeabilidade e cisalhamento direto, objetivando determinar os parâmetros de resistência mecânica e condutividade hidráulica dos solos em estudo, para aplicação em projetos e construções de barragens de terra.

4.1 CARACTERIZAÇÃO FÍSICA DOS SOLOS

A caracterização física dos solos consiste na determinação e identificação das propriedades das partículas que constituem o material. Para tanto, foram empregados três tipos de ensaios: granulometria, índices de consistência e massa específica real dos grãos.

4.1.1 Análise granulométrica

Conforme já detalhado no item 3 - Metodologia, as quatro amostras de solos desta pesquisa foram identificadas da seguinte forma: Solo A, Solo B, Solo C e Solo D. A caracterização física do Solo A foi realizada por Viecili (2003), enquanto os demais solos foram caracterizados nesta pesquisa.

Os resultados obtidos nos ensaios de granulometria (peneiramento e sedimentação) dos solos estudados são apresentados na Tabela 1. As planilhas contendo os dados coletados em laboratório são apresentadas no Anexo 2.

Tabela 1: Diâmetro dos grãos (mm) x porcentagem passante

	% de material passante dos solos nas peneiras						
Sol	o A	Sol	о В	Sol	o C	Sol	o D
# (mm)	% passante	# (mm)	% passante	# (mm)	% passante	# (mm)	% passante
25,400	100,00	25,400	100,00	25,400	100,00	25,400	100,00
19,100	100,00	19,100	100,00	19,100	100,00	19,100	100,00
12,700	100,00	12,700	99,80	12,700	100,00	12,700	100,00
9,500	100,00	9,500	99,76	9,500	100,00	9,500	100,00
4,800	100,00	4,760	99,53	4,760	100,00	4,760	99,99
2,000	99,77	2,000	98,80	2,000	99,92	2,000	99,96
0,590	99,21	0,590	98,14	0,590	98,59	0,590	99,61
0,420	98,89	0,420	97,52	0,420	97,70	0,420	99,14
0,297	96,16	0,297	97,00	0,297	96,40	0,297	97,71
0,149	95,69	0,149	95,17	0,149	91,48	0,149	88,99
0,074	95,07	0,074	93,27	0,074	87,00	0,074	81,10
0,064	94,97	0,059	89,10	0,062	85,80	0,062	76,50
0,045	94,72	0,042	89,10	0,044	83,60	0,044	76,50
0,032	94,48	0,029	87,95	0,031	83,05	0,031	75,47
0,022	93,74	0,020	86,83	0,021	82,50	0,021	73,40
0,016	88,82	0,014	85,68	0,015	80,30	0,015	71,33
0,012	87,39	0,010	83,44	0,011	75,88	0,011	70,63
0,008	84,93	0,007	81,17	0,008	73,08	0,008	69,07
0,006	82,47	0,005	78,80	0,006	71,43	0,006	66,51
0,004	81,04	0,004	76,16	0,004	68,61	0,004	63,40
0,003	77,18	0,003	75,65	0,003	65,81	0,003	60,80
0,002	73,66	0,002	72,83	0,002	63,86	0,002	57,31
0,001	72,38	0,001	69,08	0,001	58,42	0,001	54,60

As curvas granulométricas das quatro amostras de solo em estudo, obtidas a partir dos dados da tabela acima são apresentadas na Figura 33.

O Solo A é composto por 82,47% de argila (< 0,005 mm), 12,25% de silte (0,005 – 0,074 mm), 5,28% de areia (0,074 – 4,8 mm), não possuindo fração de pedregulho.

O Solo B é composto por 78,80% de argila (< 0,005 mm), 10,30% de silte (0,005 – 0,074 mm), 10,43% de areia (0,074 – 4,8 mm), possuindo apenas 0,47% de pedregulho (> 4,8 mm).

Já o Solo C é composto por 71,43% de argila (< 0,005 mm), 12,17% de silte (0,005 – 0,074 mm), 16,40% de areia (0,074 – 4,8 mm), não possuindo fração de pedregulho.

Por fim, o Solo D constitui-se de 66,51% de argila (< 0,005 mm), 9,99% de silte (0,005 – 0,074 mm), 23,49% de areia (0,074 – 4,8 mm), além de uma pequena parcela, 0,01% de pedregulho (> 4,8 mm).

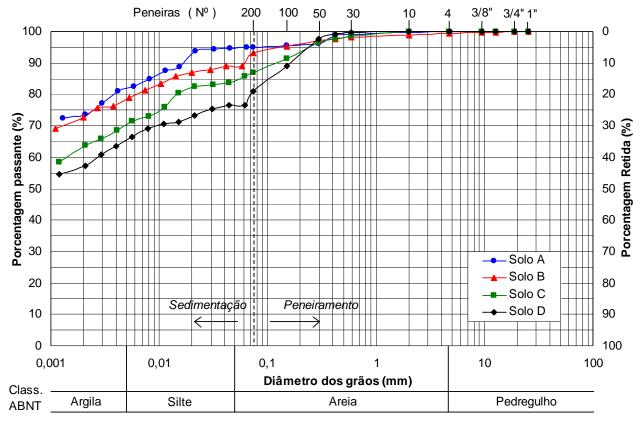


Figura 33: Curvas granulométricas dos solos

Na Tabela 2 é apresentado um resumo da análise granulométrica contendo as porcentagens das frações constituintes de cada amostra solo, obtidas a partir da Figura 33.

Tabela 2: Resumo da análise granulométrica

			0	
Amostra	Pedregulho	Areia	Silte	Argila
Solo A	0,00%	5,28%	12,25%	82,47%
Solo B	0,47%	10,43%	10,30%	78,80%
Solo C	0,00%	16,40%	12,17%	71,43%
Solo D	0,01%	23,49%	9,99%	66,51%

4.1.2 Índices de consistência

Do ponto de vista da Engenharia, os solos não podem ser caracterizados apenas com a distribuição granulométrica, em função da fração fina constituinte, que tem importância relevante no comportamento do material. Partículas muito pequenas apresentam grandes superfícies específicas e por isso apresentam comportamento diferenciado, quando comparados com partículas maiores, perante a presença de água.

Buscando identificar a influência das partículas argilosas dos solos, a Engenharia passou a empregar os ensaios e índices propostos pelo engenheiro químico Atterberg, adaptados por Arthur Casagrande.

Os índices de consistência, também chamados "limites de Atterberg", dos quatro solos amostrados são apresentados na Tabela 3. As planilhas com os dados obtidos em laboratório são apresentados no Anexo 3.

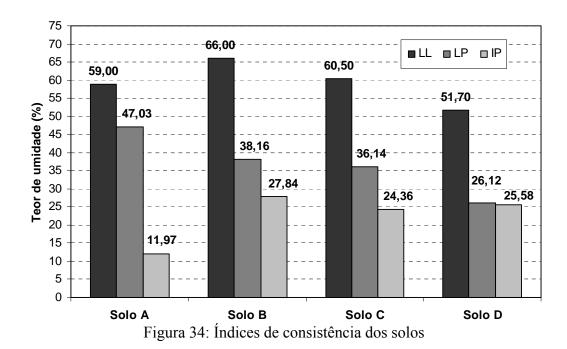

Visando analisar os resultados sob a ótica estatística, calculou-se a média, o desvio padrão e o coeficiente de variação dos valores obtidos para cada solo.

Tabela 3: Índices de consistência das amostras de solo

Amostra	Limite de liquidez LL (%)	Limite de plasticidade LP (%)	Índice de plasticidade IP (%)
Solo A*	59,00	47,03	11,97
Solo B	66,00	38,16	27,84
Solo C	60,50	36,14	24,36
Solo D	51,70	26,12	25,58
Média	59,30	36,86	22,44
Desvio Padrão	5,89	8,58	7,13
Média + desv. padrão	65,19	45,45	29,56
Média – desv. padrão	53,41	28,28	15,31
Coef. de variação	9,94%	23,28%	31,76%

Nota: *Obtido em Viecili (2003)

Os índices da Tabela 3 são ilustrados graficamente na Figura 34, onde pode ser observada a variação dos resultados de limites de liquidez, limites de plasticidade e índices de plasticidade das quatro amostras de solo.

Pinto (2002) apresenta resultados típicos de alguns solos brasileiros, entre eles o solo residual de basalto, que possui LL entre 45 - 70 % e IP entre 20 - 30 %, conforme o Quadro 10.

Na Tabela 3, pode-se observar que os valores de LL dos quatro solos encontram-se entre 53,41 – 65,19%, isto é, dentro dos resultados típicos do solo residual de basalto. Apenas o Solo A apresentou IP (11,97%) fora dos limites considerados por Pinto (2002), sendo expresso pelo elevado coeficiente de variação (31,76%) encontrado.

Na Tabela 4 são apresentados os valores do Índice de Atividade (IA) dos solos estudados.

Tabela 4: Índices de atividade dos solos

Amostra	Índice de atividade
Solo A	0,16
Solo B	0,38
Solo C	0,38
Solo D	0,45

Considerando os valores de índice de atividade das argilas adotados por Pinto (2002), apresentados no item 3.4.1 – Ensaios de caracterização física, observa-se que os resultados das quatro amostras de solo apresentados na Tabela 4, são inferiores a 0,75. Portanto, são consideradas argilas inativas.

4.1.3 Massa específica real dos grãos

A massa específica real dos grãos, também chamada de "massa específica dos sólidos (ou dos grãos)" é uma característica que expressa a relação entre a massa das partículas sólidas e o seu volume, sendo expresso pelo símbolo γ_s .

Os resultados obtidos dos ensaios de massa específica real dos solos estudados são dispostos na Tabela 5.

Tabela 5: Massa específica real dos grãos dos solos estudados

Amostra	Massa específica real (kN/m³)
Solo A	28,52
Solo B	28,34
Solo C	28,25
Solo D	28,72
Média	28,46
Desvio padrão	0,21
Média + desvio padrão	28,66
Média – desvio padrão	28,25
Coeficiente de variação	0,73%

Pode-se observar na tabela acima que os valores de massa específica real encontrados para os quatro solos possuem uma variação mínima, insignificante, expressa pelo baixo coeficiente de variação encontrado (0,73 %). A média das massas específicas reais é de 28,46 kN/m³, demonstrando que os valores das quatro amostras são muito próximos. Sendo assim, quando utilizado para cálculo e dimensionamento de anteprojetos de obras de terra, o valor de massa específica real pode ser adotado entre 28,25 – 28,66 kN/m³.

Os resultados apresentados na Tabela 5, são ilustrados graficamente na Figura 35, enquanto que os dados obtidos em laboratório são apresentados nas planilhas do Anexo 4.

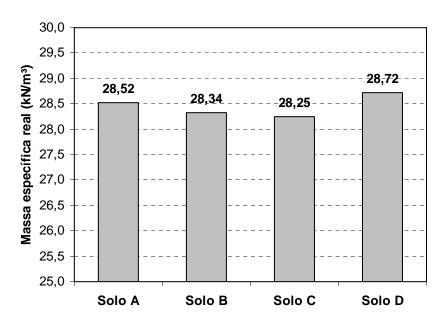


Figura 35: Massa específica real dos grãos dos solos estudados

4.2 CLASSIFICAÇÃO DOS SOLOS

Em função da grande diversidade dos solos e das diferenças de comportamento entre eles, surgiram os sistemas de classificação dos solos. Esses sistemas baseados nos parâmetros físicos e no comportamento das partículas dos solos, visam agrupá-los em conjuntos distintos, limitados por índices numéricos.

A classificação dos solos pode ser realizada de diversas formas, como: pela sua origem, pela sua evolução, pela presença ou não de matéria orgânica, pela estrutura, ou pelo índice de vazios.

Os solos em estudo foram classificados segundo os três sistemas mais usados universalmente: Classificação Triangular, Unificada e Rodoviária.

É importante salientar que os sistemas de classificação não levam em consideração as propriedades do solo depois de estruturado (da forma que será utilizado em campo) e por isso devem ser utilizadas com cuidado, perante as características identificadas (citadas) por uma classificação.

4.2.1 Classificação triangular

A classificação triangular leva em consideração as frações dos materiais que constitui um solo (% de pedregulho + areia, % de silte e % de argila). Essas frações foram determinadas na análise granulométrica e estão apresentadas na Tabela 2.

De posse das referidas frações que constituem os solos, traçou-se linhas paralelas sobre o diagrama de classificação triangular pelo B.P.R., apresentado no item 3.4.2 – Classificação dos solos.

Na Figura 36 apresenta-se o triângulo equilátero dessa classificação, com a localização dos Solos A, B, C e D, sendo possível a identificação da classe à que pertence cada solo.

Através da Figura 36 identifica-se que as quatro amostras de solo em estudo são classificadas como uma argila, com baixo teor de silte e areia.

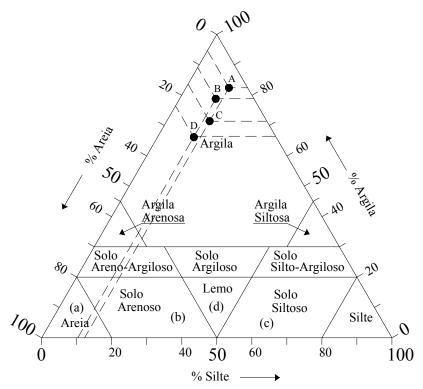


Figura 36: Identificação dos solos sobre o triângulo. Fonte: Adaptada de Vargas (1977)

4.2.2 Classificação unificada

Essa classificação leva em consideração a fração de finos (menor que 0,075 mm) presentes no solo e os seus índices de consistência (LL e IP).

Assim, conhecendo-se as porcentagens de material passante nas peneiras através das curvas granulométricas da Figura 33, verifica-se que os Solos A, B, C e D possuem material passante na peneira nº 200 superior a 50%, sendo então classificados como solos de granulação fina, conforme Quadro 12.

Uma vez definidos os valores de LL e IP de cada solo, foi possível identificar que os Solos A, B e C se classificam como um MH (silte de alta compressibilidade) ou um OH (solo orgânico de alta compressibilidade). Porém, sabe-se que os solos em estudo não são orgânicos, e sim residuais oriundos da Formação Serra Geral. O Solo D, por sua vez, se classifica como uma CH (argila de alta compressibilidade).

Segundo Vargas (1977), os solos com granulação fina de elevada compressibilidade do tipo MH, possuem uma baixa resistência quando estão secos. Já os solos do tipo CH, nas mesmas condições, possuem uma resistência bastante elevada. Considerando a qualidade como fundação, os solos MH e CH não são eficientes. Por outro lado, no que se refere à permeabilidade, o solo MH apresenta baixo valor e, o solo CH é considerado praticamente impermeável.

4.2.3 Classificação rodoviária

A classificação rodoviária também leva em consideração a fração fina e os índices de consistência do solo, semelhante à classificação unificada, porém, considera granulação fina, o solo com mais de 35% de material passante na peneira nº 200.

Dessa forma, conhecendo a porcentagem de material passante na peneira nº 200 e os valores de LL e IP de cada solo, identificou-se através do Quadro 13 que os Solos A, B e C pertencem aos grupos A7-5, enquanto o Solo D pertence ao grupo A7-6.

4.3 COMPACTAÇÃO

A compactação consiste na técnica de aumentar a massa específica aparente de um solo, objetivando a redução do índice de vazios entre as partículas e a melhoria das propriedades mecânicas e hidráulicas.

Os resultados dos ensaios de compactação das quatro amostras de solo (Solo A, B, C e D) são apresentados na Figura 31. As planilhas contendo os dados levantados em laboratório estão apresentadas no Anexo 5.

Deve-se ressaltar que o ensaio de compactação com o Solo A foi realizado por Bonafé et al (2003), enquanto os ensaios com as demais amostras foram realizados nesta pesquisa.

Mesmo assim, os resultados obtidos com o Solo A foram analisados juntamente com os demais, a fim de realizar comparação.

Na Figura 37 verifica-se que, aumentando a umidade, a massa específica aparente do solo aumenta gradativamente até um determinado ponto, denominado "massa específica aparente seca máxima" ($\gamma_{dm\acute{a}x}$) e a seguir começa a diminuir, formando uma parábola com cavidade para baixo. Vale salientar que o pico pronunciado nas curvas e a grande influência da umidade no aumento do γ_{d} , são características intrínsecas dos solos finos.

É necessário destacar que os valores da umidade ótima (h_{ot}) e da massa específica aparente seca máxima ($\gamma_{dm\acute{a}x}$) dos solos, apresentados na Tabela 6, não foram determinados a partir das curvas de compactação plotadas na Figura 37. Esses parâmetros foram determinados a partir das especificações da NBR 7182/86, traçando duas tangentes sobre os pontos do ramo seco e do ramo úmido da compactação, interpolando os mesmos da melhor forma possível. Na intersecção das duas tangentes projetou-se uma curva suave, de modo a unir estas linhas. Conseqüentemente, os resultados obtidos na determinação dos parâmetros de compactação (h_{ot} e $\gamma_{dm\acute{a}x}$), apresentam uma pequena discrepância dos valores que podem ser observados nas curvas da Figura 37, em função destas serem traçadas pelo software Excel, através de um ajuste polinomial.

Os parâmetros de compactação (h_{ot} e $\gamma_{dm\acute{a}x}$) determinados por meio das curvas traçadas manualmente (de acordo NBR 7182/86), são apresentados na Tabela 6.

Tabela 6: Resumo dos ensaios de compactação

rabela 0. Reballo dob elibaros de compactação				
Amostra	Umidade ótima (%)	Massa espec. aparente seca máxima (kN/m³)		
Solo A *	32,30	13,93		
Solo B	36,00	13,80		
Solo C	31,50	14,60		
Solo D	28,50	15,10		
Média	32,08	14,36		
Desvio Padrão	3,09	0,61		
Média + desvio padrão	35,16	14,96		
Média – desvio padrão	28,99	13,75		
Coeficiente de variação	9,62%	4,22%		

Nota: * Obtido em Bonafé (2003)

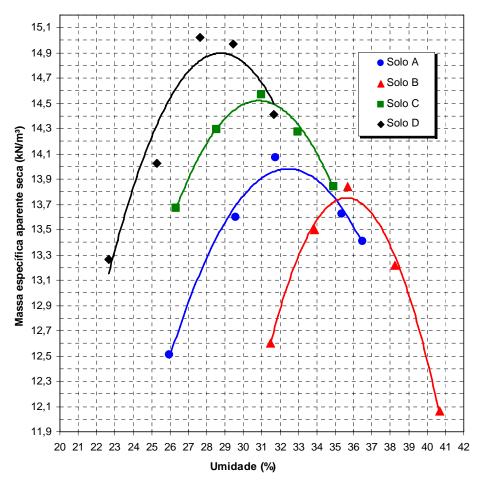


Figura 37: Curvas de compactação das amostras de solos

Observando os valores de h_{ot} e $\gamma_{dm\acute{a}x}$ da tabela acima, é possível perceber que há uma pequena variação nas características dos quatro solos, expressa pelo coeficiente de variação de cada parâmetro. Mesmo assim, considera-se que os valores de umidade ótima encontrados são bastante próximos da média (32,08%), e por isso pode-se estabelecer que a h_{ot} dos solos residuais fica entre 28,0 - 35,0%. Também é possível verificar que a umidade ótima é inversamente proporcional a massa específica aparente, pois na medida que aumenta a h_{ot} dos solos, diminui o valor de suas $\gamma_{dm\acute{a}x}$. Essa correlação é resultante da granulometria dos solos, ou seja, quanto mais grosso for o solo, menor será sua h_{ot} e maior sua $\gamma_{dm\acute{a}x}$, conforme pode ser observado nos valores da Tabela 6 e no gráfico da Figura 37.

Os resultados de h_{ot} e $\gamma_{dm\acute{a}x}$ da Tabela 6 são ilustrados de maneira simplificada na Figura 38 (a) e (b).

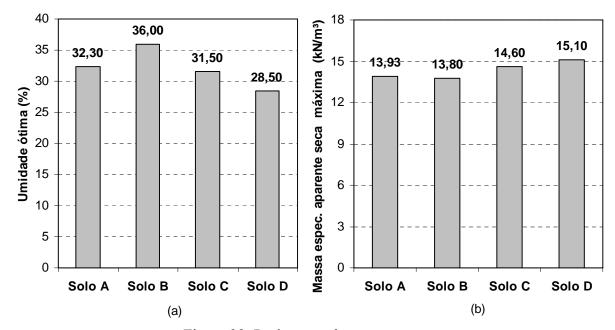


Figura 38: Parâmetros de compactação (a): umidade ótima dos solos estudados (b): densidade máxima dos solos estudados

4.4 PERMEABILIDADE

A permeabilidade representa a característica hidráulica dos solos, sendo expressa pelo coeficiente de permeabilidade ou condutividade hidráulica (k), que indica a velocidade de percolação da água pelo interior do material.

O coeficiente de permeabilidade varia de um solo para outro em função de suas características físicas, ou seja, quanto maior o tamanho das partículas e os vazios do solo, maior o valor de k, quando o mesmo estiver submetido a uma diferença de potencial (carga hidráulica).

Os resultados do coeficiente de permeabilidade (k) dos solos em estudo são apresentados na Tabela 7. Porém, as planilhas com os dados obtidos nos ensaios de laboratório são apresentadas no Anexo 6.

É indispensável salientar que na determinação dos resultados de k, foi considerada a influência da temperatura da água durante o ensaio, uma vez que esta tem sua viscosidade alterada consideravelmente com a variação de temperatura.

Tabela 7: Coeficiente de permeabilidade dos solos estudados

Amostra	Coeficiente de permeabilidade (m/s)
Solo A	8,21E-09
Solo B	2,19E-10
Solo C	2,52E-10
Solo D	2,54E-10
Média	2,23E-09
Desvio padrão	3,99E-09
Média + desvio padrão	6,22E-09
Média – desvio padrão	-1,75E-09
Coeficiente de variação	1,78E+02%

Analisando os resultados da Tabela 7, conclui-se que os valores de k das quatro amostras de solo são baixíssimos, com uma média de 2,23E-09 m/s.

Conforme exposto no Quadro 4 do item 2.3.3 – Valores típicos de coeficientes de permeabilidade (k), Lambe & Whitman (1974) classificam os solos com coeficiente de permeabilidade menor que 10⁻⁷ cm/s ou 10⁻⁹ m/s, como sendo "praticamente impermeável". Assim sendo, constata-se que os solos em estudo, com exceção do Solo A, são impermeáveis do ponto de vista da engenharia, em especial, se tratando de barragens de terra e/ou reservatórios.

Pinto (2002) cita valores típicos de k para alguns tipos de solos, os quais já foram descritos no Quadro 5 do item 2.3.3 – Valores típicos de coeficientes de permeabilidade. Segundo esses valores, o Solo A apresenta o coeficiente de permeabilidade (8,21E-09 m/s) típico de um silte, enquanto os demais solos apresentam valores de k típico das argilas.

Os coeficientes de permeabilidade dos solos apresentados na Tabela 7 podem ser visualizados no gráfico da Figura 39.

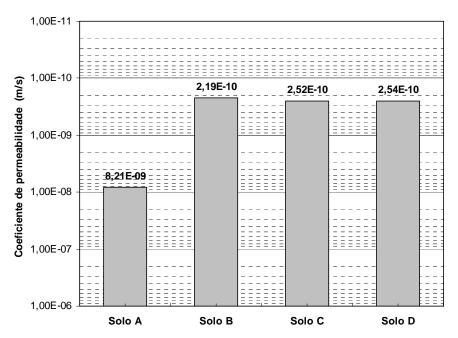


Figura 39: Coeficientes de permeabilidade dos solos estudados

Mesmo considerando apenas os solos (B, C e D) com valores de $k < 10^{-9}$ m/s, em função do Solo A ser objeto de comparação (estudado em outra pesquisa) e apresentar um $k = 10^{-9}$ m/s, verificou-se que o solo residual de basalto da região em estudo possui boas características hidráulicas para fins de construção de barragens de terra. Além disso, vale lembrar que este estudo foi realizado com energia de compactação normal; conseqüentemente, se for usado uma energia intermediária e/ou modificada, o coeficiente de permeabilidade será bem menor.

4.5 RESISTÊNCIA AO CISALHAMENTO

A resistência ao cisalhamento de um solo é resultante da soma de duas parcelas obtidas a partir dos seguintes parâmetros: ângulo de atrito (ϕ') e coesão (c').

Neste estudo, os valores de ϕ ' e c' foram determinados por meio de ensaios de cisalhamento direto, descritos no item 3.4.5 – Ensaio de cisalhamento direto. Os ensaios

foram realizados numa velocidade de 0,031 mm/minutos, em condições drenadas, usando a energia de compactação normal.

Vale ressaltar que os ensaios de cisalhamento direto com o Solo A foram realizados por Bonafé (2003), porém os resultados foram demonstrados neste relatório para fins de comparação com os demais (Solos B, C e D).

Nos próximos itens são apresentados os resultados obtidos nos ensaios de cisalhamento dos quatro solos estudados, nas diferentes tensões normais (σ) aplicada (30, 60, 100 e 200 kPa). Também é apresentada a análise e sistematização dos resultados, com a finalidade de traçar as envoltórias de resistência dos solos. Com o traçado das envoltórias determinou-se o ângulo de atrito (ϕ ') e a coesão (c') de cada solo. As planilhas contendo os dados obtidos no laboratório são mostradas no Anexo 7.

4.5.1 Tensão normal de 30 kPa

A Figura 40 (a) mostra o gráfico da tensão cisalhante durante o ensaio das quatro amostras de solo, submetidas à tensão normal efetiva de 30 kPa. A Figura 40 (b) apresenta a deformação volumétrica das amostras.

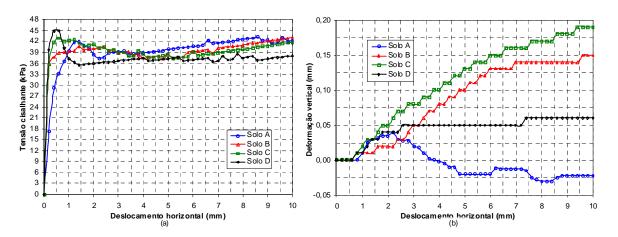


Figura 40: Gráfico resultante da $\sigma = 30$ kPa (a) tensão cisalhante x deslocamento horizontal

(b) deformação vertical x deslocamento horizontal

Na Figura 40 (a) verifica-se a semelhança das linhas de tensão cisalhante dos solos. O Solo D apresenta um pico mais acentuado que os de demais, mantendo uma tensão aproximadamente constante até o final do ensaio. Na Figura 40 (b), não se evidencia semelhança entre as linhas de deformação volumétrica, sendo que o Solo A teve comportamento compressivo, ao contrário dos demais.

4.5.2 Tensão normal de 60 kPa

A Figura 41 (a) mostra o gráfico da tensão cisalhante durante o ensaio das quatro amostras de solo, submetidas à tensão normal efetiva de 60 kPa. A Figura 41 (b) apresenta a deformação volumétrica das amostras.

Na Figura 41 (a) pode ser observado que o Solo A e o B apresentaram uma pequena diferença nas linhas de tensão cisalhante. Já na Figura 41 (b) observa-se que todos os solos tiveram comportamento compressivo, ou seja, redução de volume, embora apresentando grande variação entre si.

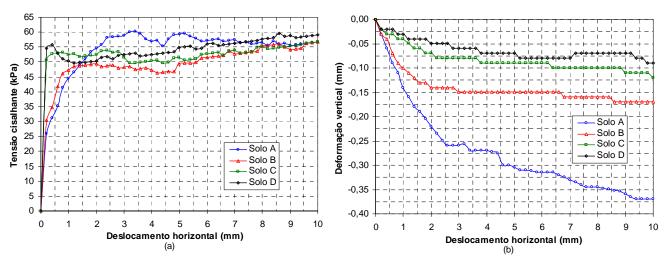


Figura 41: Gráfico resultante da $\sigma = 60 \text{ kPa}$

(a) tensão cisalhante x deslocamento horizontal(b) deformação vertical x deslocamento horizontal

4.5.3 Tensão normal de 100 kPa

A Figura 42 (a) mostra o gráfico da tensão cisalhante durante o ensaio das quatro amostras de solo, submetidas à tensão normal efetiva de 100 kPa. A Figura 42 (b) apresenta a deformação volumétrica das amostras.

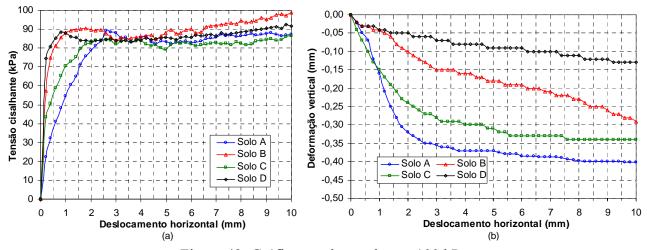


Figura 42: Gráfico resultante da $\sigma = 100 \text{ kPa}$

- (a) tensão cisalhante x deslocamento horizontal
- (b) deformação vertical x deslocamento horizontal

Na Figura 42 (a) o comportamento cisalhante dos solos é bem semelhante, apresentando valores de τ muito próximo. Observa-se na Figura 42 (b) que nesse ensaio as amostras também tiveram comportamento compressivo e as deformações volumétricas apresentaram grande variação (0,10 - 0,40 mm).

4.5.4 Tensão normal de 200 kPa

A Figura 43 (a) mostra o gráfico da tensão cisalhante durante o ensaio das quatro amostras de solo, submetidas à tensão normal efetiva de 200 kPa. A Figura 43 (b) apresenta a deformação volumétrica das amostras.

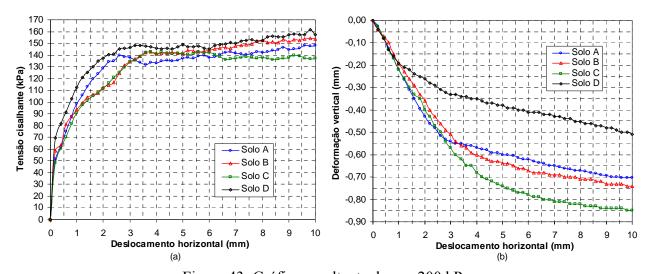


Figura 43: Gráfico resultante da σ = 200 kPa (a) tensão cisalhante x deslocamento horizontal (b) deformação vertical x deslocamento horizontal

As linhas de tensões cisalhantes apresentadas na Figura 43 (a), são muito semelhantes, comparando- as com as linhas de tensão cisalhante dos ensaios com tensão normal menor que 200 kPa. Na Figura 43 (b) se observa uma certa semelhança nas deformações volumétricas das amostras no início do ensaio, mas que logo em seguida começa a se diferenciar.

4.5.5 Análise e sistematização

A partir dos gráficos apresentados anteriormente, foi possível extrair os valores de tensão cisalhante máxima de cada solo, nas tensões normais de 30, 60, 100 e 200 kPa. Os respectivos valores de tensão cisalhante (τ) são apresentados resumidamente na Tabela 8.

Observa-se na Tabela 8 que os valores de tensão cisalhante máxima das quatro amostras de solo são semelhantes quando comparadas na mesma tensão normal, o que se confirma pelo coeficiente de variação de 5,25%, 9,24%, 3,00% e 2,17% para as tensões normais de 30, 60, 100 e 200 kPa, respectivamente. Esses valores comprovam que os solos amostrados possuem características semelhantes, o que também foi evidenciado nos resultados obtidos com os demais ensaios realizados.

rabela 6. Tensab elsamante maxima dos solos 11, B, C e B, para edad tensab normal em ki a					
Tensão normal (kPa)					
Amostra	30 kPa	60 kPa	100 kPa	200 kPa	
Solo A	41	61	89	141	
Solo B	40	49	90	142	
Solo C	43	53	84	143	
Solo D	45	56	88	148	
Média	42,25	54,75	87,75	143,5	
Desvio padrão	2,22	5,06	2,63	3,11	
Média + desv. pad.	44,47	59,81	90,38	146,61	
Média - desv. pad.	40,03	49,69	85,12	140,39	
Coef. de variação	5,25%	9,24%	3,00%	2,17%	

Tabela 8: Tensão cisalhante máxima dos Solos A, B, C e D, para cada tensão normal em kPa

Os resultados da Tabela 8 foram utilizados para o traçado das envoltórias de resistência dos solos, conforme visualizado na Figura 44.

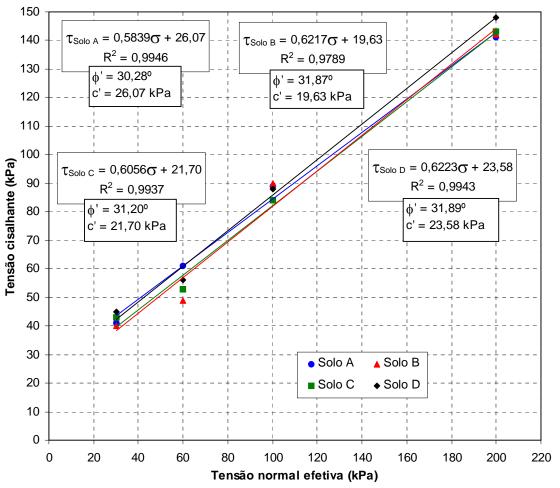
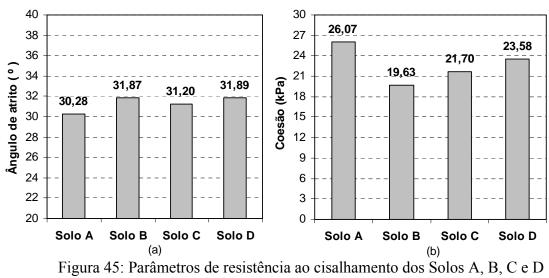


Figura 44: Envoltórias de resistência dos Solos A, B, C e D


Através das envoltórias de resistência e das suas respectivas equações apresentadas no gráfico da Figura 44, determinou-se o ângulo de atrito (ϕ ') e a coesão (c') de cada solo, os quais são detalhados e analisados na Tabela 9.

Observando os valores do ângulo de atrito dos quatro solos, na Tabela 9, verifica-se que são muito semelhantes. Podem ser considerados iguais visto que o coeficiente de variação é muito pequeno (2,42%), considerando o número de ensaios necessários para determinação deste parâmetro. Por outro lado, os valores da coesão dos solos, apresentam uma considerável diferença, expressa pelo coeficiente de variação (12,04%). Mesmo assim, pode-se adotar valores típicos de coesão para os solos residuais de basalto, com a finalidade de utilizá-los (com cuidado) em anteprojetos e estudos preliminares de obras de terra.

Tabela 9: Valores do ângulo de atrito e coesão dos solos

Amostra	Parâmetros		
Amosira	Ângulo de atrito (°)	Coesão (kPa)	
Solo A	30,28	26,07	
Solo B	31,87	19,63	
Solo C	31,20	21,70	
Solo D	31,89	23,58	
Média	31,31	22,74	
Desvio padrão	0,76	2,74	
Média + desv. padrão	32,07	25,48	
Média – desv. padrão	30,55	20,01	
Coef. de variação	2,42%	12,04%	

Na Figura 45 é apresentado um gráfico, onde são mostrados os valores do ângulo de atrito e da coesão dos solos em estudo.

- (a) valores do ângulo de atrito
- (b) valores da coesão

5 CONSIDERAÇÕES FINAIS

5.1 CONCLUSÃO

Considerando o estudo realizado para desenvolvimento desta pesquisa, cujo objetivo era determinar as propriedades mecânicas e hidráulicas de solos residuais de basalto, visando o emprego em barragens de terra, algumas conclusões puderam ser traçadas:

A partir dos sistemas de classificação verificou-se que os solos não apresentam boas características de resistência e deformabilidade. Vale lembrar que os ensaios que levam a estas classificações são realizados em amostras deformadas.

Quando compactado, o solo residual de basalto da região Noroeste do Rio Grande do Sul possui propriedades mecânicas e hidráulicas adequadas para ser utilizado na construção de obras de terra, como por exemplo: barragens para geração de energia elétrica, contenção de rejeitos e/ou reservatórios de água para abastecimento e irrigação (açudes). Além disso, constitui-se num material natural renovável, de baixo custo e com excelentes características para esse tipo de obra, principalmente no aspecto hidráulico, denotado pelos baixos valores do coeficiente de permeabilidade (k) encontrado ($\leq 10^{-9}$).

Contudo, na utilização do solo residual de basalto como material de construção de barragens de terra, deve-se levar em consideração a erosão do solo, nas faces de montante e jusante, resultante das fortes precipitações ocorridas e das ondas d'água provocadas pelo vento (face montante). Esses processos erosivos devem ser contidos a fim de evitar futuros problemas, seja através de enrocamento com material granular ou com membrana de concreto. Neste aspecto, as obras de terra do tipo "barragem de terra-enrocamento" e "barragem de enrocamento com face de concreto (BEFC)", apresentam melhor desempenho.

Observando os resultados obtidos nos ensaios de compactação, permeabilidade e resistência ao cisalhamento, foi possível estabelecer valores típicos para os solos residuais de

basalto, os quais podem ser usados, com cautela, quando não se dispõe de valores específicos determinados em laboratório.

No Quadro 15 são apresentados alguns valores característicos que podem ser usados como parâmetros para cálculo e dimensionamento de anteprojetos de obras de terra.

Quadro 15: Valores típicos dos solos estudados

Parâm	etros*	Unidade	Valor característico
Compactação	h _{ot}	%	28 a 35
Compaciação	γdmáx	kN/m³	13,5 a 15,0
Hidráulicos	k	m/s	≤ 10 ⁻⁹
Resistência ao	φ'	graus (°)	30 a 32
cisalhamento	c'	kPa	20 a 26

Nota: * Parâmetros obtidos considerando a energia de compactação normal

É importante ressaltar que este estudo foi realizado levando em consideração apenas a energia de compactação normal. Logo, se forem adotadas energias maiores como a intermediária e a modificada, os valores característicos dos parâmetros dos solos residuais de basalto serão ainda melhores, todavia haverá aumento dos custos de compactação. Tal análise deve ser feita para cada caso de obra.

5.2 SUGESTÕES PARA TRABALHOS FUTUROS

A seguir são apresentadas algumas sugestões para outros trabalhos de pesquisa:

- ☐ Determinar o Índice de Suporte Califórnia (ISC), mais conhecido como C.B.R. (California Bearing Ratio) dos solos estudados nesta pesquisa;
- \Box Determinar a h_{ot} e o $\gamma_{dm\acute{a}x}$ dos solos em estudo, nas energias de compactação intermediária e modificada a fim de verificar qual a amplitude de variação dos valores obtidos;

Estudar os parâmetros de compactação, permeabilidade e resistência ao cisalhamento, considerando as três energias de compactação, para solos de outros locais da região Noroeste do RS;
 Estudar qual a variação das características mecânicas e hidráulicas dos solos residuais de basalto dessa região, misturado com diferentes porcentagens de material pétreo, visando à construção de barragens ou reservatórios;
 Aplicar os parâmetros determinados neste estudo em projetos de barragens;
 Utilizar softwares para realizar simulação numérica do comportamento hidráulico de barragem de terra a partir dos resultados encontrados;
 Determinar a permeabilidade *in situ* para verificar a importância da estrutura do solo nas condições de campo;
 Extrair amostras indeformadas nos locais de estudo para medir o valor de k em laboratório.

REFERÊNCIAS BIBLIOGRÁFICAS

ALBERTONI, Silvano. As novas barragens de enrocamento com face de concreto da Região Sul do Brasil, na bacia do Rio Uruguai. **Geosul**, Joinville, 1984, p. 65-77, 2002.

ALVES, Schirley Cavalcante. A água como elemento fundamental da paisagem em microbacias. In: **Informe agropecuário.** Belo Horizonte, nov/dez 2000, v. 21, n. 207, p. 9-14.

ASSOCIAÇÃO BRASILERIA DE NORMAS TÉCNICAS. **NBR 6457:** Amostras de solo – Preparação para ensaios de compactação e ensaios de caracterização _ Comitê Brasileiro de Construção Civil. **S. l.**:1986

	_ NBR 6459: Solo – Determinação
do limite de liquidez _ Comitê Brasileiro de Construção Civ	vil. S. l. :1984
	NBR 7180: Solo – Determinação
do limite de plasticidade _ Comitê Brasileiro de Construção	_ ,
	NDD -100 G I
compactação _ Comitê Brasileiro de Construção Civil. S. l.	_ NBR 7182: Solo — Ensaio de : 1986
	NBR 6508/84 – Grãos de solo
que passam na peneira de 4,8 mm – Determinação da mas	sa específica (Método de ensaio) _
Comitê Brasileiro de Construção Civil S. 1 :1984	

AZAMBUJA, Marco Aurélio; PICADA, Darci de Souza & CORDEIRO, Athos Pinto. **Geologia aplicada a barragens.** Porto Alegre: Ed. CEUE, 1980, 64 p.

BIBLIOTECA UNIVERSITÁRIA MÁRIO OSÓRIO MARQUES (org). **Trabalhos acadêmicos:** apresentação, referências e citações. Ijuí: Ed. UNIJUÍ, 2004. 31 p (Série Educação 85).

BONAFÉ, Leandro et al. **Estudo da resistência de um solo compactado.** Ijuí, 2003. Relatório de Estágio Supervisionado II (Curso de Engenharia Civil) – Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, 2003.

BONAFÉ, Leandro. **Estudo da resistência de um solo residual de basalto estabilizado e reforçado.** 2004. 101 p. Trabalho de Conclusão de Curso (graduação em Engenharia Civil) — Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, 2004.

CAPUTO, Homero Pinto. **Mecânica dos solos e suas aplicações:** fundamentos. 6 ª ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, 1988, v. 1, 234 p.

Mecânica dos solos e suas aplicações: mecânica das rochas – fundações – obras de terra. 6 ^a ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, 1987, v. 2, 498 p.

FLOSS, Márcio et al. Aplicação da metodologia para inspeção de segurança de barragens da região de Passo Fundo – RS. In: SEMINÁRIO DE ENGENHARIA GEOTÉCNICA DO RIO GRANDE DO SUL, 3, 2005, Passo Fundo. **Anais.** Passo Fundo: UPF, 2005.

GEHLING, Wai Ying Yurk; ROLSENBERG, Ari & DIAS, Regina Davison. Caracterização geotécnica de solos do planalto meridional do Rio Grande do Sul. In: CONGRESSO BRASILEIRO DE GEOLOGIA DE ENGENHARIA, 3, 1981, Itapema – SC. 1981, p. 103-117.

HEAD, K. H. Manual of soil laboratory testing. London: Pentech Press, 1981, 747 p.

LAMBE, T. William & WHITMAN, Robert V. **Mecánica de suelos.** México: Editorial Limusa S. A.,1974, 582 p.

MACHADO, Sandro Lemos; MACHADO, Miriam de Fátima. **Mecânica dos solos II:** conceitos básicos. Bahia, 1997.

MASSAD, Faiçal. **Obras de terra:** curso básico de geotecnia. São Paulo: Oficina de Textos, 2003, 170 p.

MENESCAL, Rogério de Abreu. As barragens e as enchentes. In: MENESCAL, Rogério de Abreu (org). **A segurança de barragens e a gestão de recursos hídricos no Brasil.** Brasília: Proágua, 2005-a, p.289-299.

MENESCAL, Rogério de Abreu; FILHO, GONDIM, Joaquim Guedes Corrêa & OLIVEIRA, Yuri Castro de. A recuperação de açudes no âmbito da gestão dos recursos hídricos do estado do Ceará. In: SIMPÓSIO DE RECURSOS HÍDRICOS DO NORDESTE, III, 1996, Salvador

 BA. A segurança de barragens e a gestão de recursos hídricos no Brasil. Brasília: Proágua, 2005-b, p. 91-99.

MENESCAL, Rogério de Abreu et al. Ações de segurança de barragens no estado do Ceará. In: SEMINÁRIO NACIONAL DE GRANDES BARRAGENS, XXIV, 2001, Fortaleza – CE. **A segurança de barragens e a gestão de recursos hídricos no Brasil.** Brasília: Proágua, 2005-c, p.101-118.

PINTO, Carlos de Sousa. **Curso básico de mecânica dos solos em 16 aulas.** 2ª ed. São Paulo: Oficina de Textos, 2002. 355 p.

ROSSI, Adriana Rost. Sua Majestade: a água subterrânea. In: CAMPOS, Heraldo et al. **Ciências da terra e meio ambiente:** diálogos para (inter) ações no planeta. São Leopoldo: Ed. UNISINOS, 1999, 110 p.

SPECHT, Luciano Pivoto. **Avaliação de misturas asfálticas com incorporação de borracha reciclada de pneus.** 2004, 279 p. Tese (Doutorado em Engenharia Civil) – Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2004.

VARGAS, Milton. **Introdução à mecânica dos solos.** São Paulo: Mcgraw-Hill do Brasil, Ed. da Universidade de São Paulo, 1977, 509 p.

VIECILI, Cristiano. **Determinação dos parâmetros de resistência do solo de Ijuí a partir do ensaio de cisalhamento direto.** 2003. 15 p. Projeto de TCC (graduação em Engenharia Civil) – Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, 2003.

WALLAU, Juliano Reis. **Avaliação da técnica de estabilização granulométrica como revestimento primário de rodovias não-pavimentadas.** 2004. 68 p. Trabalho de Conclusão de Curso (graduação em Engenharia Civil) — Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí, 2004.

ANEXO I

Resultados obtidos na "Caracterização geotécnica de solos do Planalto Meridional do RS".

MEDIA E COEFICIENTE DE VARIAÇÃO DAS CARACTERÍSTICAS DOS SOLOS DA REGIÃO

TAMANHO das AMOS - TRAS		1.9	<u> </u>	7.0	0	Ф
EXPAN- SAO		X=0,65	3V=9 5, 76	\overline{X} =1,80	CV=69,25	X=0,42 CV=51,37
ISC.		X=12,66	CV=34,96	<u>X</u> = 10	CV=44,94	X=16,29 CV=15,67
COMPACTAÇÃO hot Ys max. (%) (g/cm ²)		X=62,9 X=0,406 X=2,77 X=33,07 X=1,39 X=12,66	CV=7,97%	\overline{X} =64,5 \overline{X} =0,422 \overline{X} =2,75 \overline{X} =31,49 \overline{X} =1,38 \overline{X} =10	CV=5,36	X=1,55 CV=5,76%
	COMPACTAÇÃO hot Ys ma (%) (g/cm		CV=17,87%	X=31,49	CV=9,83%	$\overline{X} = 24,6$ CV=16,23
DENSI- DADE dos GRAOS		X=2,77	CV=3,79%	X=2,75	CV=3,15	X=2,73
ATIVI- DADE COLOI- DAL		\overline{X} =0,406	CV=32,63	$\overline{X} = 0,422$	CV=23,28	X=0,406 CV=11,36
XI A	IA argila %		CV=12,96	X=64,5	CV=4,91	\overline{X} =40,4 \overline{X} = 8,9 \overline{X} =50,67 \overline{X} =0,406 \overline{X} =2,73 \overline{X} =24,6 \overline{X} =1,55 \overline{X} =16,29 $.V$ =27,44 $.VV$ =39,48 $.VV$ =20,97 $.VV$ =11,36 $.VV$ =1,44% $.VV$ =16,23 $.VV$ =5,76% $.VV$ =15,67 $.VV$ =27,44
NNULOMETE	GRANULOMETRIA a silte ar %		CV=46,02	X=16,1	CV=25,67	$\overline{X} = 8,9$
GR	GRA areia %		CV=18,15	\overline{X} =19,4 \overline{X} =16,1	CV=20,90	X=40,4 CV=27,44
DE	Ip (%)	$\overline{X} = 22$	CV=18,44 CV=20,35% CV=25,07 CV=18,15 CV=46,02 CV=12,96 CV=32,63 CV=3,79% CV=17,87% CV=7,97% CV=34,96 CV=95,76	$\overline{X} = 24$	CV=16,63 CV=17,81 CV=21,38 CV=20,90 CV=25,67 CV=4,91 CV=23,28 CV=3,15 CV=9,83% CV=5,36 CV=44,94 CV=69,25	$\overline{X} = 19$ CV=21,94
LIMITES [ATTERGERG	Lp (%) Ip (%)	<u>X</u> = 40	CV=20,35%	<u>X</u> = 42	CV=17,81	$\overline{X} = 47$ $CV = 15,62$
LIM	LIMI AT AT (%)		CV=18,44	X = 65	CV=16,63	$\overline{X} = 47$ $\overline{X} = 47$ $\overline{X} = 19$ $\overline{X} = 40, 4$ $\overline{X} = 8, 9$ $\overline{X} = 50, 67$ $\overline{X} = 0, 406$ $\overline{X} = 2, 73$ $\overline{X} = 24, 6$ $\overline{X} = 1, 55$ $\overline{X} = 16, 29$ $\overline{X} = 0, 42$ $\overline{X} = 15, 62$ $\overline{C} = 15, 62$ $\overline{C} = 19, 62$ $\overline{C} = 10, 62$
rochas	rochas de origem		Dasalto		r10 1t0	arenito (formação Tupanci- retã)

TABELA II

* X = media

** CV = coeficiente de variação (%)

CARACTERÍSTICAS DE RESISTÊNCIA NO ENSAIO DE CISALHAMENTO DIRETO

	n	UMIDADE	NATURAL			SUBM	SUBMERSA	
LOCAL	(kg/cm ²)	0	ω,	SR (%)	(kg/cm ²)	0	٤.	SR (%)
Tapera	0,65	230	1,12	76,1	0,3	230	1,17	81,5
(Formação Tupanci- retã-Arenito)	09,0	230	1,00	79,6	0,3	230	1,07	89,3
Carazinho	0,4	290	1,45	41,2	0,2	280	1,42	55,3
(Formação Tupanci- retã-Arenito)	0,4	270	1,56	41,8	0,2	240	1,31	58,2
Soledade	0,75	290	1,34	60,5	0,25	260	1,35	75,4
(riolito)	08,0	220	1,38	64,1	0,35	220	1,40	73,8
Passo Fundo	0,4	250	1,15	82,6	0,3	220	1,27	84,2
(riolito)	0,4	2,70	1,32	72,04	0,3	270	1,25	85,3
Anta Gorda	0,5	320	1,21	81,45	0,4	340	1,16	91,89
	0,5	340	1,09	84,54	0,4	350	1,03	95,19

ANEXO II

Planilhas dos ensaios de granulometria

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez BernardiAmostra: Solo A (Campus)

Data:

Teor	de Umidade	(w)
Ps+t+agua (g):	79,9	73,78
Ps + tara (g):	73,19	67,843
tara (g):	20,72	21,23
w (%):	12,79	12,74
w média (%):	12	.,77

	Sedimentação							
Massa	a Esp.s	ólidos (g/cm³):	2,852	Peso	úmido (g):	70,4	P. seco (g):	62,43
Temp	0	Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Decor	rido	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	18,5	1,0653E-05	1,0430	1,00441	11,85	0,064	94,97
1	min	18,5	1,0653E-05	1,0429	1,00441	11,86	0,0452	94,72
2	min	18,5	1,0653E-05	1,0428	1,00441	11,88	0,032	94,48
4	min	18,5	1,0653E-05	1,0425	1,00441	10,84	0,0216	93,74
8	min	18,5	1,0653E-05	1,0405	1,00441	11,21	0,0155	88,82
15	min	18	1,0785E-05	1,0400	1,00449	11,3	0,0115	87,39
30	min	18	1,0785E-05	1,0390	1,00449	11,49	0,0082	84,93
1	hora	18	1,0785E-05	1,0380	1,00449	11,67	0,0058	82,47
2	hora	17,5	1,0921E-05	1,0375	1,00457	11,76	0,0042	81,04
4	hora	17	1,1058E-05	1,0360	1,00464	12,04	0,003	77,18
8	hora	17,5	1,0921E-05	1,0345	1,00457	12,32	0,0021	73,66
24	hora	14,5	1,1791E-05	1,0344	1,00499	12,34	0,0013	72,38

		Peneiramento					
Ph #	#10 (g):	70,4		Ph #4 (g):	1078		
Ps 7	#10 (g):	62,43		Ps #4 (g):	955,93		
Pen	eiras	Mat. Retido	Material que	e passa (g)	(%)		
Ν°	mm	(g)	Parcial	Total	Passante		
	25,4				100		
	19,1				100		
	12,7				100		
	9,5				100		
4	4,80				100		
10	2,0	2,16		953,77	99,77		
					100		
30	0,59	0,35	62,08		99,21		
40	0,42	0,2	61,88		98,89		
50	0,297	1,71	60,17		96,16		
100	0,149	0,29	59,88		95,69		
200	0,074	0,39	59,49		95,07		

Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo B 1º Determ.

Data: 25/10/05

Teor	de Umidade	(w)
Ps+t+agua (g):	177,87	165,02
Ps + tara (g):	153,40	143,05
tara (g):	42,88	44,00
w (%):	22,14	22,18
w média (%):	22	,16

				Sedime	ntação			
Massa	Esp.s	ólidos (g/cm³):	2,834	Peso	úmido (g):	82,83	P. seco (g):	67,8
Temp		Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Decor	rido	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	27,0	8,7397E-06	1,043	1,00269	11,85	0,0582	90,37
1	min	27,0	8,7397E-06	1,043	1,00269	11,85	0,0412	90,37
2	min	27,0	8,7397E-06	1,043	1,00269	11,85	0,0291	90,37
4	min	27,0	8,7397E-06	1,042	1,00269	10,93	0,0198	88,12
8	min	27,0	8,7397E-06	1,042	1,00269	10,93	0,014	88,12
15	min	27,0	8,7397E-06	1,040	1,00269	11,30	0,0104	83,64
30	min	27,0	8,7397E-06	1,039	1,00269	11,49	0,0074	81,40
1	hora	27,0	8,7397E-06	1,038	1,00269	11,67	0,0053	79,16
2	hora	26,2	8,8959E-06	1,037	1,00288	11,86	0,0038	76,49
4	hora	25,2	9,0974E-06	1,037	1,0031	11,86	0,0027	76,00
8	hora	24,0	9,3487E-06	1,036	1,00337	12,04	0,002	73,15
24	hora	25,6	9,0159E-06	1,034	1,00301	12,41	0,0011	69,47

	Peneiramento					
Ph a	#10 (g):	82,83		Ph #4 (g):	1148,45	
Ps a	#10 (g):	67,80	•	Ps #4 (g):	940,12	
Per	eiras	Mat. Retido	Material que	e passa (g)	(%)	
Ν°	mm	(g)	Parcial	Total	Passante	
1"	25,4				100	
3/4"	19,1				100	
1/2"	12,7	3,74		936,38	99,60	
3/8"	9,5	0,78		935,6	99,52	
4	4,76	3,59		932,01	99,14	
10	2,0	7,28		924,73	98,36	
					100	
30	0,59	0,34	67,46		97,87	
40	0,42	0,39	67,07		97,30	
50	0,297	0,33	66,74		96,82	
100	0,149	1,27	65,47		94,98	
200	0,074	1,34	64,13		93,04	

Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo B 2º Determ.

Data: 25/10/05

Teor de Umidade (w)					
Ps+t+agua (g):	164,66	186,82			
Ps + tara (g):	143,48	161,44			
tara (g):	46,01	45,18			
w (%):	21,73	21,83			
w média (%):	21	,78			

	Sedimentação							
Massa	a Esp.s	ólidos (g/cm³):	2,834	Peso úmido (g):		81,46	P. seco (g):	66,89
Tempo		Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Deco	riao	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	27,0	8,7397E-06	1,041	1,00269	12,22	0,0591	87,82
1	min	27,0	8,7397E-06	1,041	1,00269	12,22	0,0418	87,82
2	min	27,0	8,7397E-06	1,040	1,00269	12,4	0,0298	85,53
4	min	27,0	8,7397E-06	1,040	1,00269	11,3	0,0201	85,53
8	min	27,0	8,7397E-06	1,039	1,00269	11,49	0,0143	83,24
15	min	27,0	8,7397E-06	1,039	1,00269	11,49	0,0105	83,24
30	min	27,0	8,7397E-06	1,038	1,00269	11,67	0,0075	80,94
1	hora	26,6	8,8173E-06	1,037	1,00278	11,86	0,0053	78,44
2	hora	26,0	8,9356E-06	1,036	1,00292	12,04	0,0038	75,83
4	hora	25,0	9,1385E-06	1,036	1,00315	12,04	0,0027	75,30
8	hora	24,0	9,3487E-06	1,035	1,00337	12,23	0,002	72,51
24	hora	25,5	9,0362E-06	1,033	1,00304	12,6	0,0011	68,68

			Peneiramen	to	
Ph #	#10 (g):	81,46		Ph #4 (g):	1250,14
Ps #10 (g): 66,89		66,89		Ps #4 (g):	1026,56
Pen	eiras	Mat. Retido	Material que	e passa (g)	(%)
Ν°	mm	(g)	Parcial	Total	Passante
1"	25,4				100
3/4"	19,1				100
1/2"	12,7				100
3/8"	9,5				100
4	4,8	0,89		1025,67	99,91
10	2,0	6,98		1018,69	99,23
					100
30	0,59	0,55	66,33		98,40
40	0,42	0,45	65,88		97,73
50	0,30	0,37	65,51		97,18
100	0,15	1,23	64,28		95,36
200	0,074	1,25	63,03		93,50

Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo C 1º Determ.

Data: 31/10/05

Teor de Umidade (w)						
Ps+t+agua (g):	240,62	238,91				
Ps + tara (g):	216,99	215,71				
tara (g):	45,16	47,49				
w (%):	13,75	13,79				
w média (%):	13	,77				

	Sedimentação							
Massa	a Esp.s	ólidos (g/cm³):	2,825 Peso úmido (g):		80,00	P. seco (g):	70,32	
Temp	0	Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Decoi	rido	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	21,8	9,8386E-06	1,0430	1,00382	11,85	0,0619	86,18
1	min	21,8	9,8386E-06	1,0415	1,00382	12,12	0,0443	82,88
2	min	21,8	9,8386E-06	1,0410	1,00382	12,22	0,0314	81,78
4	min	21,8	9,8386E-06	1,0410	1,00382	11,12	0,0212	81,78
8	min	21,8	9,8386E-06	1,0405	1,00382	11,21	0,0151	80,68
15	min	21,8	9,8386E-06	1,0380	1,00382	11,67	0,0112	75,18
30	min	21,8	9,8386E-06	1,0370	1,00382	11,86	0,008	72,98
1	hora	21,8	9,8386E-06	1,0360	1,00382	12,04	0,0057	70,78
2	hora	21,6	9,8851E-06	1,0350	1,00385	12,23	0,0041	68,52
4	hora	21,6	9,8851E-06	1,0340	1,00385	12,41	0,0029	66,32
8	hora	21,2	9,9792E-06	1,0330	1,00393	12,6	0,0021	63,94
24	hora	21,5	9,9085E-06	1,0300	1,00387	13,15	0,0012	57,47

			Peneiramen	to		
Ph #	#10 (g):	80,00		Ph #4 (g): 114		
Ps #	#10 (g):	70,32		Ps #4 (g):	1005,23	
Pen	eiras	Mat. Retido	Material que	e passa (g)	(%)	
Ν°	mm	(g)	Parcial	Total	Passante	
1"	25,4				100	
3/4"	19,1				100	
1/2"	12,7				100	
3/8"	9,5				100	
4	4,8				100	
10	2,0	0,79		1004,44	99,92	
					100	
30	0,59	0,93	69,39		98,60	
40	0,42	0,61	68,78		97,73	
50	0,297	0,90	67,88		96,45	
100	0,149	3,33	64,55		91,72	
200	0,074	3,23	61,32		87,13	

Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo C 2º Determ.

Data: 31/10/05

Teor de Umidade (w)					
Ps+t+agua (g):	188,89	184,04			
Ps + tara (g):	170,03	165,61			
tara (g):	31,32	30,45			
w (%):	13,60	13,64			
w média (%):	13	,62			

	Sedimentação							
Massa	a Esp.s	ólidos (g/cm³):	2,825	Peso úmido (g):		79,87	P. seco (g):	70,30
Tempo Decorrido		Temperatura (°C)	Viscosidade (g.s\cm2)	Densidade L	Correção Ld	Altura Queda (cm)	Diâmetro (mm)	(%) Amost. Total < Diâm.
30	seg	22,5	9,6785E-06	1,0425	1,00368	11,94	0,0616	85,41
1	min	22,5	9,6785E-06	1,0420	1,00368	12,03	0,0437	84,31
2	min	22,5	9,6785E-06	1,0420	1,00368	12,03	0,0309	84,31
4	min	22,5	9,6785E-06	1,0415	1,00368	11,02	0,0209	83,21
8	min	22,5	9,6785E-06	1,0400	1,00368	11,3	0,015	79,91
15	min	22,4	9,7011E-06	1,0385	1,0037	11,58	0,0111	76,57
30	min	22,2	9,7466E-06	1,0370	1,00374	11,86	0,008	73,18
1	hora	22,2	9,7466E-06	1,0365	1,00374	11,95	0,0056	72,08
2	hora	22,0	9,7924E-06	1,0350	1,00378	12,23	0,0041	68,69
4	hora	21,8	9,8386E-06	1,0335	1,00382	12,5	0,0029	65,3
8	hora	20,8	1,0075E-05	1,0330	1,00401	12,6	0,0021	63,78
24	hora	20,7	1,0099E-05	1,0310	1,00402	12,97	0,0012	59,36

			Peneiramen	to	
Ph #	#10 (g):	79,87		Ph #4 (g):	1230,89
Ps #10 (g): 70,30 Ps #4 (g):		1083,34			
Pen	eiras	Mat. Retido	Material que	Material que passa (g)	
Ν°	mm	(g)	Parcial	Total	Passante
1"	25,4				100
3/4"	19,1				100
1/2"	12,7				100
3/8"	9,5				100
4	4,8				100
10	2,0	0,87		1082,47	99,92
					100
30	0,59	0,94	69,36		98,58
40	0,42	0,64	68,72		97,67
50	0,30	0,94	67,78		96,34
100	0,15	3,59	64,19		91,24
200	0,074	3,08	61,11		86,86

Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

Chefe do Setor

Diretor do Laboratório

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo D 1º Determ.

Data: 31/10/05

Teor de Umidade (w)						
Ps+t+agua (g):	131,92	132,24				
Ps + tara (g):	123,94	124,05				
tara (g):	21,85	19,50				
w (%):	7,82	7,83				
w média (%):	7,83					

	Sedimentação							
Massa	a Esp.s	ólidos (g/cm³):	2,872	Peso	úmido (g):	79,97	P. seco (g):	74,16
Temp	0	Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Decoi	rrido	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	22,6	9,6559E-06	1,0405	1,00366	12,31	0,0617	76,17
1	min	22,6	9,6559E-06	1,0405	1,00366	12,31	0,0436	76,17
2	min	22,6	9,6559E-06	1,0400	1,00366	12,4	0,031	75,14
4	min	22,6	9,6559E-06	1,0395	1,00366	11,39	0,021	74,11
8	min	22,6	9,6559E-06	1,0385	1,00366	11,58	0,015	72,04
15	min	21,7	9,8618E-06	1,0380	1,00384	11,67	0,0111	70,63
30	min	21,6	9,8851E-06	1,0370	1,00385	11,86	0,0079	68,54
1	hora	21,6	9,8851E-06	1,0360	1,00385	12,04	0,0056	66,48
2	hora	21,7	9,8618E-06	1,0340	1,00384	12,41	0,004	62,36
4	hora	21,8	9,8386E-06	1,0330	1,00382	12,6	0,0029	60,34
8	hora	20,8	1,0075E-05	1,0315	1,00401	12,87	0,0021	56,84
24	hora	21,6	9,8851E-06	1,0305	1,00385	13,06	0,0012	55,10

	Peneiramento							
Ph #	#10 (g):	79,97		Ph #4 (g):	1342,65			
Ps 7	#10 (g):	74,16		Ps #4 (g):	1245,15			
Pen	eiras	Mat. Retido	Material que	e passa (g)	(%)			
Ν°	mm	(g)	Parcial	Total	Passante			
1"	25,4				100			
3/4"	19,1				100			
1/2"	12,7				100,00			
3/8"	9,5				100			
4	4,76	0,31		1244,84	99,98			
10	2,0	0,33		1244,51	99,95			
					100			
30	0,59	0,24	73,92		99,63			
40	0,42	0,33	73,59		99,18			
50	0,297	1,09	72,5		97,71			
100	0,149	6,35	66,15		89,15			
200	0,074	5,94	60,21		81,15			

Percentagens					
Argila:					
Silte:					
Areia Fina:					
Areia Média:					
Areia Grossa:					
Pedregulho:					

Chefe do Setor

Diretor do Laboratório

Material: A

Certificado nº.

Análise Granulométrica de Solos

Interessado: Juarez Bernardi Amostra: Solo D 2º Determ.

Data: 31/10/05

Teor de Umidade (w)						
Ps+t+agua (g):	133,39	127,41				
Ps + tara (g):	125,27	119,65				
tara (g):	20,17	19,37				
w (%):	7,73	7,74				
w média (%):	7,74					

	Sedimentação							
Massa Esp.sólidos (g/cm³):			2,872	Peso úmido (g): 79,9		79,96	P. seco (g):	74,22
Temp	0	Temperatura	Viscosidade	Densidade	Correção	Altura Queda	Diâmetro	(%) Amost.
Decoi	rido	(°C)	(g.s\cm2)	L	Ld	(cm)	(mm)	Total < Diâm.
30	seg	21,8	9,8386E-06	1,041	1,00382	12,22	0,0621	76,82
1	min	21,8	9,8386E-06	1,041	1,00382	12,22	0,0439	76,82
2	min	21,8	9,8386E-06	1,0405	1,00382	12,31	0,0312	75,79
4	min	21,8	9,8386E-06	1,039	1,00382	11,49	0,0213	72,69
8	min	21,8	9,8386E-06	1,038	1,00382	11,67	0,0152	70,62
15	min	21,8	9,8386E-06	1,038	1,00382	11,67	0,0111	70,62
30	min	21,8	9,8386E-06	1,0375	1,00382	11,76	0,0079	69,59
1	hora	21,9	9,8155E-06	1,036	1,0038	12,04	0,0056	66,53
2	hora	21,8	9,8386E-06	1,035	1,00382	12,23	0,004	64,43
4	hora	21,6	9,8851E-06	1,0335	1,00385	12,5	0,0029	61,26
8	hora	20,6	1,0123E-05	1,032	1,00404	12,78	0,0021	57,77
24	hora	21,8	9,8386E-06	1,030	1,00382	13,15	0,0012	54,09

	Peneiramento							
Ph i	#10 (g):	79,96		Ph #4 (g):	1349,2			
Ps a	#10 (g):	74,22		Ps #4 (g):	1252,27			
Per	eiras	Mat. Retido	Material que	e passa (g)	(%)			
Nο	mm	(g)	Parcial	Total	Passante			
1"	25,4				100			
3/4"	19,1				100			
1/2"	12,7				100			
3/8"	9,5				100			
4	4,76				100			
10	2,0	0,49		1251,78	99,96			
					100			
30	0,59	0,28	73,94		99,58			
40	0,42	0,36	73,58		99,10			
50	0,297	1,04	72,54		97,70			
100	0,149	6,59	65,95		88,82			
200	0,074	5,78	60,17		81,04			

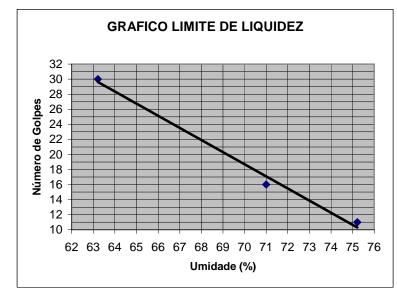
Percentagens
Argila:
Silte:
Areia Fina:
Areia Média:
Areia Grossa:
Pedregulho:

ANEXO III

Planilhas dos ensaios de Limites de Atterberg

Material: B

Certificado nº:


LIMITES FÍSICOS - CONSISTÊNCIA

Interessado: JUAREZ BERNARDI Amostra: SOLO-B (Chorão) Data: 5/10/2005

RESULTADOS DOS ENSAIOS

Limite de liquidez	66,00
Limite de plasticidade	38,16
Índice de plasticidade	27,84

LIMITE DE LIQUIDEZ							
Cápsula	n°.	1	2	3	4	5	6
C + S + A	g			14,16	11,39	13,94	
C + solo	g			11,17	9,04	10,51	
Água	g			2,99	2,35	3,43	
Cápsula	g			6,44	5,73	5,95	
Solo	g			4,73	3,31	4,56	
Umidade	%			63,21	71,00	75,22	
GOLPE	S			30	16	11	

MASSA ESPECÍFICA REAL							
Temp. °C							
Pic. N°	1	2					
Pic. + água							
Pic+s+a g							
Pic+solo g							
Pic g							
M.esp.real							
Média g/m ³							

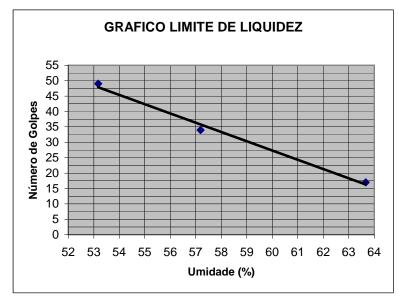
ÍNDICE DE PLASTICIDADE				
Limite de liquidez	66,00			
Limite de plasticidade 38,16				
Índice de plasticidade	27,84			

	LIMITE DE PLASTICIDADE						
CÁPSULA N ^O	1	2	3	4	5	6	7
C+S+A g	4,52	4,48	4,32	3,62	4,34	4,29	
C+solo g	4,07	4,04	3,96	3,25	3,97	3,90	
Água g	0,45	0,44	0,36	0,37	0,37	0,39	
Cápsula g	2,89	2,90	3,03	2,31	2,98	2,84	
Solo g	1,18	1,14	0,93	0,94	0,99	1,06	
Umidade %	38,14	38,60	38,71	39,36	37,37	36,79	
LIMITE DE PLAS	TICIDADE:	38,16	(menos 5%)	36,25	(mais 5%)	40,07	

Material: C

Certificado nº:

LIMITES FÍSICOS - CONSISTÊNCIA


Interessado: JUAREZ BERNARDI Amostra: SOLO-C (Barreiro)

Data: 6/10/2005

RESULTADOS DOS ENSAIOS

Limite de liquidez	60,50
Limite de plasticidade	36,14
Índice de plasticidade	24,36

	LIMITE DE LIQUIDEZ									
Cápsula	n°.	1	2	3	4	5	6			
C + S + A	g	12,40	16,36		17,70					
C + solo	g	9,97	12,50		13,32					
Água	g	2,43	3,86		4,38					
Cápsula	g	5,40	5,75		6,44					
Solo	g	4,57	6,75		6,88					
Umidade	%	53,17	57,19		63,66	·				
GOLPE	S	49	34		17					

MASSA ESPECÍFICA REAL								
Temp. °C								
Pic. N°	1	2						
Pic. + água								
Pic+s+a g								
Pic+solo g								
Pic g								
M.esp.real								
Média g/m ³								

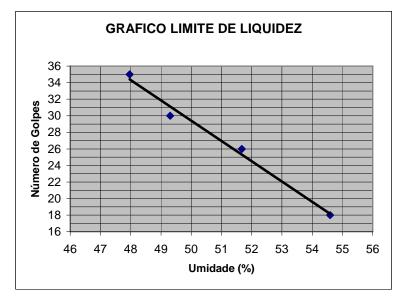
ÍNDICE DE PLASTICIDADE					
Limite de liquidez	60,50				
Limite de plasticidade	36,14				
Índice de plasticidade	24,36				

	LIMITE DE PLASTICIDADE							
CÁPSULA N ^O	1	2	3	4	5	6	7	
C+S+A g	4,48	4,56	4,71	4,30	3,70	4,25	4,04	
C+solo g	4,07	4,10	4,26	3,95	3,33	3,88	3,73	
Água g	0,41	0,46	0,45	0,35	0,37	0,37	0,31	
Cápsula g	2,95	2,87	3,03	2,94	2,32	2,86	2,84	
Solo g	1,12	1,23	1,23	1,01	1,01	1,02	0,89	
Umidade %	36,61	37,40	36,59	34,65	36,63	36,27	34,83	
LIMITE DE PLAS	TICIDADE:	36,14	(menos 5%)	34,33	(mais 5%)	37,95		

Material: D

Certificado nº:

LIMITES FÍSICOS - CONSISTÊNCIA


Interessado: JUAREZ BERNARDI Amostra: SOLO-D (Esquina Renz)

Data: 7/10/2005

RESULTADOS DOS ENSAIOS

Limite de liquidez	51,70
Limite de plasticidade	26,12
Índice de plasticidade	25,58

	LIMITE DE LIQUIDEZ									
Cápsula	n°.	1	2	3	4	5	6			
C + S + A	g		17,07	13,98	13,37	16,10				
C + solo	g		13,41	11,14	10,90	12,47				
Água	g		3,66	2,84	2,47	3,63				
Cápsula	g		5,78	5,38	6,12	5,82				
Solo	g		7,63	5,76	4,78	6,65				
Umidade	%		47,97	49,31	51,67	54,59				
GOLPE	S		35	30	26	18				

MASSA ESPECÍFICA REAL							
Temp. °C							
Pic. N°	1	2					
Pic. + água							
Pic+s+a g							
Pic+solo g							
Pic g							
M.esp.real							
Média g/m ³							

ÍNDICE DE PLASTICIDADE					
Limite de liquidez	51,70				
Limite de plasticidade	26,12				
Índice de plasticidade	25,58				

LIMITE DE PLASTICIDADE							
CÁPSULA N ^O	1	2	3	4	5	6	7
C+S+A g	4,48	3,93	4,48	4,58	3,83	4,25	
C+solo g	4,16	3,60	4,17	4,25	3,52	3,98	
Água g	0,32	0,33	0,31	0,33	0,31	0,27	
Cápsula g	2,89	2,34	3,01	2,96	2,33	2,98	
Solo g	1,27	1,26	1,16	1,29	1,19	1,00	
Umidade %	25,20	26,19	26,72	25,58	26,05	27,00	
LIMITE DE PLAS	TICIDADE:	26,12	(menos 5%)	24,82	(mais 5%)	27,43	

ANEXO IV

Planilhas dos ensaios de massa específica real

PESO ESPECÍFICO (com calibração dos picnômetros em dez2005)

<u>REAL - Picnômetro</u> - Agregado Miúdo (< 2mm)

Pic	Picnômetro (A)	Material	Pic + Mat (B)	Pic + Mat + Água (C)	Temperatura da Água °C	Pic + Água (Calibração)(<i>D</i>)	Peso Específico
1	131,19	98,35	229,54	677,87	57,9	613,98	2,854
1	131,19	98,35	229,54	680,33	46,2	616,73	2,830
1	131,19	98,35	229,54	681,43	40,4	617,89	2,825
1	131,19	98,35	229,54	683,33	28,8	619,81	2,824
1	131,19	98,35	229,54	684,47	19,4	620,97	2,822
3	131,84	105,87	237,71	681,80	58,4	612,70	2,879
3	131,84	105,87	237,71	684,19	50,0	614,68	2,912
3	131,84	105,87	237,71	685,75	40,0	616,73	2,873
3	131,84	105,87	237,71	687,68	27,4	618,82	2,860
3	131,84	105,87	237,71	688,60	18,8	619,95	2,845
						Média –	2 852

OBS: SOLO A

PESO ESPECÍFICO (com calibração dos picnômetros em dez2005)

<u>REAL - Picnômetro</u> - Agregado Miúdo (< 2mm)

Pic	Picnômetro (A)	Material	Pic + Mat (B)	Pic + Mat + Água (C)	Temperatura da Água °C	Pic + Água (Calibração) <i>(D)</i>	Peso Específico
1	131,19	116,56	247,75	689,58	58,1	613,93	2,849
1	131,19	116,56	247,75	692,17	47,0	616,56	2,846
1	131,19	116,56	247,75	693,67	38,0	618,33	2,828
1	131,19	116,56	247,75	695,19	27,6	619,98	2,819
1	131,19	116,56	247,75	696,05	19,8	620,93	2,813
2	142,55	116,03	258,58	717,25	57,0	641,78	2,861
2	142,55	116,03	258,58	718,75	52,4	643,09	2,874
2	142,55	116,03	258,58	721,27	38,4	646,38	2,821
2	142,55	116,03	258,58	722,90	27,4	648,19	2,808
2	142,55	116,03	258,58	723,91	19,6	649,06	2,818
				_		Média =	2,834

OBS: SOLO B

PESO ESPECÍFICO (com calibração dos picnômetros em dez2005)

REAL - Picnômetro - Agregado Miúdo (< 2mm)

Pic	Picnômetro (A)	Material	Pic + Mat (B)	Pic + Mat + Água (C)	Temperatura da Água °C	Pic + Água (Calibração) <i>(D)</i>	Peso Específico
1	131,19	109,15	240,34	684,89	56,5	614,34	2,828
1	131,19	109,15	240,34	686,93	48,2	616,30	2,833
1	131,19	109,15	240,34	688,76	38,2	618,30	2,821
1	131,19	109,15	240,34	690,18	28,0	619,92	2,807
1	131,19	109,15	240,34	691,19	19,2	620,99	2,802
2	142,55	110,63	253,18	713,93	56,6	641,90	2,866
2	142,55	110,63	253,18	715,68	49,5	643,86	2,850
2	142,55	110,63	253,18	718,12	36,2	646,79	2,815
2	142,55	110,63	253,18	719,47	28,0	648,11	2,817
2	142,55	110,63	253,18	720,31	20,1	649,01	2,813
		•			•	Média –	2 825

OBS: SOLO C

PESO ESPECÍFICO (com calibração dos picnômetros em dez2005)

<u>**REAL - Picnômetro**</u> - Agregado Miúdo (< 2mm)

Pic	Picnômetro (A)	Material	Pic + Mat (B)	Pic + Mat + Água (C)	Temperatura da Água °C	Pic + Água (Calibração) <i>(D)</i>	Peso Específico
3	131,84	94,08	225,92	674,27	58,2	612,75	2,890
3	131,84	94,08	225,92	676,71	47,0	615,33	2,877
3	131,84	94,08	225,92	678,74	36,0	617,45	2,869
3	131,84	94,08	225,92	680,03	27,5	618,81	2,863
3	131,84	94,08	225,92	680,96	20,1	619,79	2,859
4	128,01	112,34	240,35	684,24	56,8	610,72	2,894
4	128,01	112,34	240,35	686,28	47,0	613,05	2,873
4	128,01	112,34	240,35	687,68	40,4	614,40	2,876
4	128,01	112,34	240,35	689,65	27,4	616,54	2,863
4	128,01	112,34	240,35	690,50	19,3	617,54	2,853
		•		_		Média =	2,872

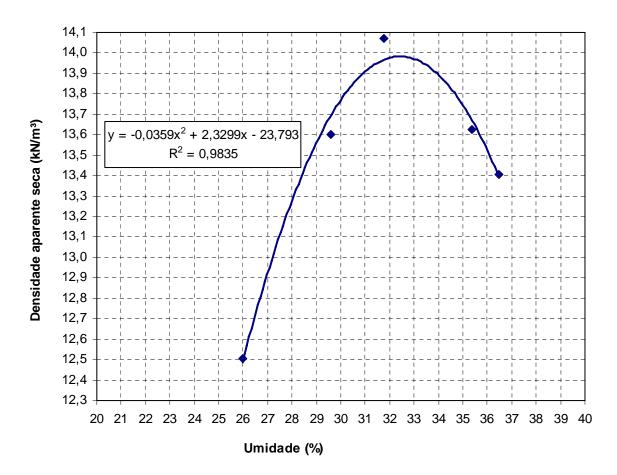
OBS: SOLO D

ANEXO V

Planilhas dos ensaios de compactação

ENSAIO DE COMPACTAÇÃO

RESULTADOS	
Densid. Máx. aparente (kNg/m³):	13,93
Umidade ótima (%):	32,30


Observações: SOLO - A (Campus-Unijui)

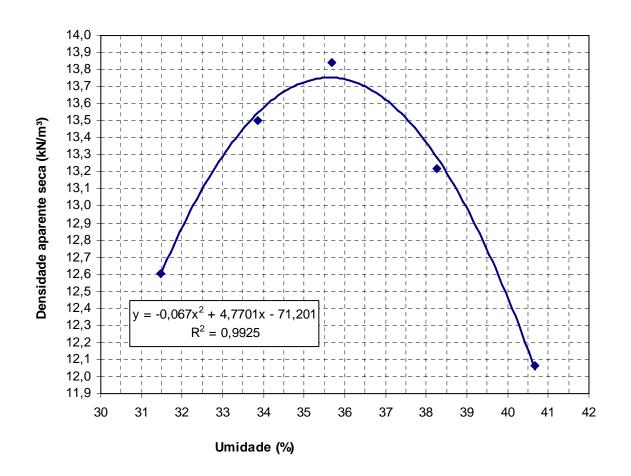
Peso da amostra (g): 2500,00

Molde n°: Peso (g): 2.213,00

Volume (dm³): 1,00 Esforço de compactação: Normal

			Estorço de co	mpactação.	Nomai		
		ENSA	10				
	Ponto nº.	1	2	3	4	5	
Peso da	a amostra compact. + peso cilindro - g	3782	3968	4059	4059 4050 4035		
Peso da	a amostra compactada - g	1569	1755	1846	1837	1822	
Densid	ade do solo úmido (Kg/dm3):	1,58	1,76	1,85	1,84	1,83	
ÃO 3	Cápsula nº. :	4	22	1	26	6	
VAÇ? ADE	Peso do solo úmido + cápsula (g)	147,18	164,07	168,79	233,71	165,24	
DETERMINAÇÃO DE UMIDADE	Peso do solo seco + cápsula (g)	123,13	133,66	135,59	185,04	129,22	
ERMIN	Peso da água (g)	24,05	30,41	33,20	48,67	36,02	
ER		30,54	30,90	31,07	47,47	30,48	
ET. DE	Peso do solo seco (g)	92,59	102,76	104,52	137,57	98,74	
D .	Percentagem de umidade (%)	25,97	29,59	31,76	35,38	36,48	
Densid	ade do solo seco (kN/m³)	12,51	13,60	14,07	13,63	13,41	
	<u> </u>	· ·	· ·			•	

ENSAIO DE COMPACTAÇÃO


Observações : SOLO - B (Chorão)

Peso da amostra (g) : 2500,00

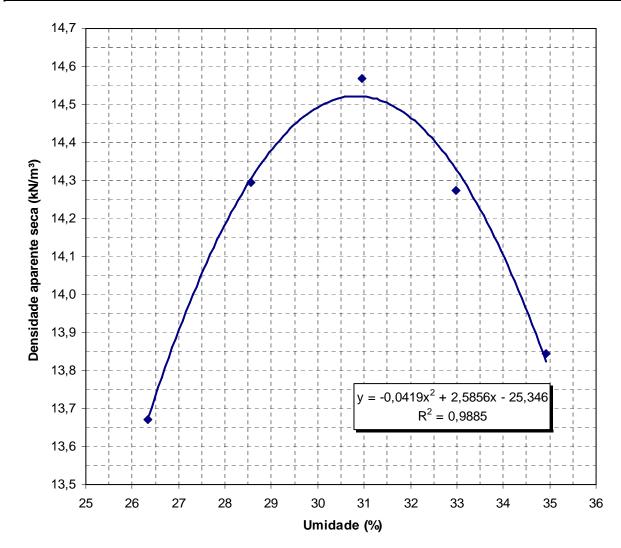
Molde n°: Peso (g): 2.230,00

Volume (dm³): 1,00 Esforço de compactação: Normal

			Estorço de compactação. Normai							
			ENSA	10						
		Ponto nº.	1	2	3	4	5			
Peso	o da	amostra compact. + peso cilindro - g	3880	4030 4100 4050 3920						
Peso	o da	amostra compactada - g	1650	1800 1870 1820 1690						
Den	sida	de do solo úmido (Kg/dm3):	1,66	1,81	1,88	1,83 1,70				
ÃO	Cápsula nº. :	2	1	3	4	5				
Ϋ́С	DE	Peso do solo úmido + cápsula (g)	70,47	65,39	79,48	76,17	61,4			
Ž	< ↑	Peso do solo seco + cápsula (g)	57,58	53,61	63,6	59,84	48,95			
DETERMINAÇÃC	UMID,	Peso da água (g)	12,89	11,78	15,88	16,33	12,45			
Ĕ		Peso da cápsula (g)	16,62	18,83	19,08	17,15	18,34			
EI	DE	Peso do solo seco (g)	40,96	34,78	44,52	42,69	30,61			
D	. ,	Percentagem de umidade (%)	31,47	33,87	35,67	38,25	40,67			
Den	sida	de do solo seco (kN/m³)	12,60	13,50	13,84	13,22	12,06			

ENSAIO DE COMPACTAÇÃO

Observações : SOLO - C (Barreiro)


DADOS DE ENSAIO

Peso da amostra (g): 2500,00

Molde n°: Peso (g): 2.230,00

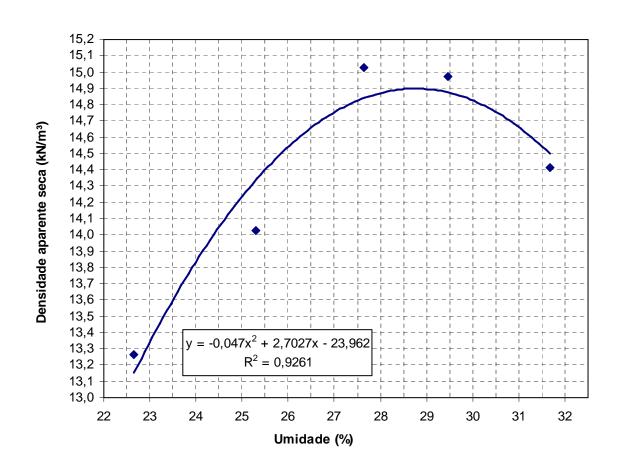
Volume (dm³): 1,00 Esforço de compactação: Normal

				Estoryo ac c	ompartagae.	110111101	
			ENSA	10			
		Ponto nº.	1	2	3	4	5
Peso	o da	amostra compact. + peso cilindro - g	3950	4060	4130	4120	4090
Peso	o da	amostra compactada - g	1720	1830	1900 1890 1860		
Den	sida	de do solo úmido (Kg/dm3):	1,73	1,84	1,91	1,90	1,87
ÃO	Cápsula nº. :	18	17	11	12	19	
Ϋ́С	DE	Peso do solo úmido + cápsula (g)	110,57	89,07	92,91	90,09	89,32
DETERMINAÇÃC	< ^	Peso do solo seco + cápsula (g)	91,59	74,14	76,48	72,53	70,95
\mathbb{Z}	UMID,	Peso da água (g)	18,98	14,93	16,43	17,56	18,37
ËR		Peso da cápsula (g)	19,53	21,86	23,41	19,28	18,35
EI	DE	Peso do solo seco (g)	72,06	52,28	53,07	53,25	52,60
D		Percentagem de umidade (%)	26,34	28,56	30,96	32,98	34,92
Den	sida	de do solo seco (kN/m³)	13,67	14,29	14,57	14,27	13,84

2.230,00

ENSAIO DE COMPACTAÇÃO

Observações : SOLO - D (Esquina Renz)


DADOS DE ENSAIO

Peso da amostra (g): 2500,00 Molde nº: Peso (g):

Volume (dm³): 1,00

Esforço de compactação: Normal

			Estorço de compactação: Normai						
			ENSA	I O					
		Ponto nº.	1	2	3	4	5		
Pesc	da	amostra compact. + peso cilindro - g	3850	3980	4140	4160 4120			
Pesc	da	amostra compactada - g	1620	1750	1910	1930	1890		
Den	sida	de do solo úmido (Kg/dm3):	1,63	1,76	1,92 1,94 1,90				
ÃO	Cápsula nº. :	10	6	7	8	20			
۲Ç	ΛÇÂ DE	Peso do solo úmido + cápsula (g)	85,39	64,09	91,53	71,45	71,82		
Ž	OA	Peso do solo seco + cápsula (g)	73,53	54,71	76,08	58,87	59,15		
\mathbb{Z}	UMID,	Peso da água (g)	11,86	9,38	15,45	12,58	12,67		
ER		Peso da cápsula (g)	21,19	17,62	20,20	16,17	19,14		
EI	DETERMINAÇÃC DE UMIDADE	Peso do solo seco (g)	52,34	37,09	55,88	42,7	40,01		
D		Percentagem de umidade (%)	22,66	25,29	27,65	29,46	31,67		
Den	sida	de do solo seco (kN/m³)	13,26	14,03	15,03	14,97	14,41		

ANEXO VI

Planilha dos ensaios de permeabilidade

UNIVERSIDADE REGIONA	AL						
		ENSAIO DE PE	RMEAB	ILIDAD	E		
Amostra: Solo-A		DETERMINAÇÃO D UMIDADE HIGRO			DENSIDADE A	PARENTE :	SECA
CLASSIFICAÇÃO :		Cápsula nº	4	43	Volume amostra (d	:m³)	2,099
,		Peso úmido + cáp.	147,46		Peso molde+solo+		8,060
		Peso seco + cáp.			Peso do molde	. .	4,140
MASSA ESPECÍFICA	REAL	Peso da água			Peso solo+água		3,920
Temperatura °C		Peso da cápsula			Densidade solo ún	ido	1,972
		Peso do solo seco			Densidade solo se		1,412
Picnômetro n°		Teor de umidade		15,49			
		Teor de umid. média		,58	UMIDADE DI		
Pic + água g				,	Cápsula nº	40	45
		MOLDAGE	ΞM		Peso úmido + cáp.	197,23	200,88
Solo g		Pso am. seca	519	1,21	Peso seco + cáp.	160,06	162,53
3		Pso amos. umid. hot		7,97	Peso da água	37,17	38,35
Água desloc. g		Pso amos. umid. Higr.		0,00	Peso da cápsula	43,98	42,94
J 2.2.2.0. 9		Água Teórica		7,97	Peso do solo seco		119,5
Massa esp. Real		Água Evaporação		2,0	Teor de umidade	32,02	32,07
		Água TOTAL		0,00	Teor umid. média		,04
PERMEÂMETR	O DE C	ARGA VARIÁVEL			A P/ COEF. PERME		•
L	A	h1 h0	k =	1 = h / L 2,3 x (. (gradiente hid	·	
	RMINAÇ	ÇÃO Nº		1	2		3
Dia / Mês / Ano	do /l'-	sial\		/2005	5/12/2005		/2005
Hora / Minuto / Segund				0:00	00:00		:00
Hora / Minuto / Segund):28	06:36		:29
Área do tubo de carga				19	5,19		19
Altura do corpo de pro) - L -		,50	11,50		,50
Área do corpo de prov		²) - A -		2,53	182,53	182,53	
	`	ho -		5,50	186,60	_	4,80
		h1 -		6,60	174,80		0,30
Temperatura do ensai	` ′	· · ·		4,8	23,0		3,0
Tempo de ensaio	(se			680	23760		940
Coeficiente de Permea	abilidade	e (cm/seg) - k -	7,42	2E-07	8,35E-07	8,86	E-07
Observacoes: Solo-A (C	ampu	s - Unijuí)		k =	8,21E-09	m/s	

		ENSAIO DE PERI	MEABIL	IDADE					
Amostra: Solo-B		DETERMINAÇÃO D UMIDADE HIGRO			DENSIDADE APAI	RENTE	SECA		
CLASSIFICAÇÃO :		Cápsula nº	5	38	Volume amostra (c	m³)	2,097		
		Peso úmido + cáp.	70,02	74,37	Peso molde+solo+a	água	8,010		
		Peso seco + cáp.	60,48		Peso do molde		4,130		
MASSA ESPECÍFICA	REAL	Peso da água	9,54	10,19	Peso solo+água				
Temperatura °C		Peso da cápsula		19,02					
·		Peso do solo seco	42,09	45,16	Densidade solo sed	ю	1,850		
Picnômetro n°		Teor de umidade	22,66	22,56	DETERMINAÇÃO	DO TEO	R DE		
		Teor de umid. média	22	2,61	UMIDADE DE M	OLDAG	EM		
Pic + água g		MOLDAG	- 14		Cápsula nº	7	18		
		MOLDAG	EIVI		Peso úmido + cáp.	87,93	88,64		
Solo g		Pso am. seca	489	3,56	Peso seco + cáp.		70,49		
ĭ		Pso amos. umid. hot		55,24	Peso da água		18,15		
Água desloc. g		Pso amos. umid. Higr.	_	00,00	Peso da cápsula	20,15			
-		Água Teórica		5,00	Peso do solo seco	50,05			
Massa esp. Real		Água Evaporação	5	,00	Teor de umidade				
·		Água TOTAL	66	0,00	Teor umid. média	35	,51		
PERMEÂMET	RO DE C	ARGA VARIÁVEL	FÓ	RMULA	P/ COEF. PERMEABI				
L	A	h1 h0	k =	I = h / L	. (gradiente hidr (a.L / A.t) x log (
DETE	RMINAÇ	ÃO Nº		1	2		3		
Dia / Mês / Ano			24/10)/2005	25/10/2005)/2005		
Hora / Minuto / Segun	do (Inic	cial)		0:00	00:00		:00		
Hora / Minuto / Segun		,	06	5:52	10:40	14	:10		
Área do tubo de carga	(cm²)	- á -	5	,19	5,19	5,	19		
Altura do corpo de pro) - L -		,49	11,49		,49		
Área do corpo de prov		²) - A -		2,41	182,41		2,41		
		ho -		2,0	191,5	1	1,0		
		h1 -		1,5	191	-	0,6		
Temperatura do ensai	<u> </u>			2,6	22,0		2,7		
Tempo de ensaio		eg) - t -		720	38400		000		
Coeficiente de Perme		07		E-08	2,12E-08		E-08		
Observacoes:		(Chorão)	2,-3	k =		m / s			
		· ,			-				

UNIVERSIDADE REGIONAL						
	ENSAIO DE PERM	/IEABILI	DADE			
Amostra: Solo-C	DETERMINAÇÃO D UMIDADE HIGRO			DENSIDADE APAR	RENTE	SECA
CLASSIFICAÇÃO :	Cápsula nº	3	17	Volume amostra (cr	m³)	2,097
	Peso úmido + cáp.	74,65		Peso molde+solo+á	água	8,150
	Peso seco + cáp.	65,76	86,54	Peso do molde		4,170
MASSA ESPECÍFICA RI	EAL Peso da água	8,89		Peso solo+água		3,980
Temperatura °C	Peso da cápsula	19,11		Densidade solo únic		1,898
	Peso do solo seco	46,65		Densidade solo sec		1,443
Picnômetro n°	Teor de umidade	19,06	19,20	DETERMINAÇÃO I		
	Teor de umid. média	19	,13	UMIDADE DE M		EM
Pic + água g	MOLDAGE	ΞM		Cápsula nº Peso úmido + cáp.	2 67,46	90.63
Solo g	Pso am. seca	50	36	Peso seco + cáp.	55,58	
9	Pso amos. umid. hot		322 322	Peso da água	11,88	
Água desloc. g	Pso amos. umid. Higr.		0,00	Peso da cápsula	16,65	
3	Água Teórica		2,00	Peso do solo seco	38,93	
Massa esp. Real	Água Evaporação		00	Teor de umidade	30,52	
·	Água TOTAL		5,00	Teor umid. média		,60
PERMEÂMETRO	DE CARGA VARIÁVEL	FÓ	RMULA	P/ COEF. PERMEABI	LIDADE	(k)
	a h1 h0	k =		. (gradiente hidra	h0 / h	1)
Dia / Mês / Ano	MINAÇÃO Nº		1 /2005	2 1/11/2005		3 /2005
Hora / Minuto / Segundo	(Inicial)		:00	00:00	-	:00
Hora / Minuto / Segundo		-	:24	10:02	_	3:38
Área do tubo de carga (1 /	-	. <u> </u>	5,19		19
Altura do corpo de prova		+	,50	11,50		,50
Área do corpo de prova	(cm²) - A -		2,41	182,41		2,41
Altura inicial d' água (cn		205	5,50	204,90	204	4,30
Altura final d' água (cn	n) - h1 -	204	1,90	204,30	203	3,90
Temperatura do ensaio	(°C)	18	3,0	16,8	17	7,8
Tempo de ensaio	(seg) - t -	30	240	36120	49	080
Coeficiente de Permeabi	lidade (cm/seg) - k -	3,32	E-08	2,86E-08	1,37	'E-08
Observacoes: Solo	o-C (Barreiro) ──►		k =	2,52E-10	m / s	 S

UNIVERSIDADE REGIONAL				Certi	ficado nº:	
	ENSAIO DE PER	RMEABI	LIDADE			
Amostra: Solo-D	DETERMINAÇÃO D UMIDADE HIGRO			DENSIDADE AP	ARENTE S	ECA
CLASSIFICAÇÃO :	Cápsula nº	39	44	Volume amostra (c	m³)	2,100
,	Peso úmido + cáp.	151,06	148,52	Peso molde+solo+a		8,250
	Peso seco + cáp.			Peso do molde		4,140
MASSA ESPECÍFICA R	REAL Peso da água	16,23		Peso solo+água		4,110
Temperatura °C	Peso da cápsula	31,02		Densidade solo úni	do	1,957
'	Peso do solo seco			Densidade solo sed	00	1,523
Picnômetro n°	Teor de umidade	15,63	15,72	DETERMINAÇÃO	DO TEOF	R DE
	Teor de umid. média	15	,68	UMIDADE DE		
Pic + água g	1101.510			Cápsula nº	4	43
3 1311 3	MOLDAGI	=IVI		Peso úmido + cáp.	120,24	114,91
Solo g	Pso am. seca	518	6,72	Peso seco + cáp.	100,54	96,41
	Pso amos. umid. hot		4,94	Peso da água	19,70	18,50
Água desloc. g	Pso amos. umid. Higr.		0,00	Peso da cápsula	30,71	30,75
J	Água Teórica		4,94	Peso do solo seco	69,83	65,66
Massa esp. Real	Água Evaporação	_	00	Teor de umidade	28,21	28,18
	Água TOTAL		0,00	Teor umid. média	28,	
PERMEÂMETRO	DE CARGA VARIÁVEL		•	A P/ COEF. PERMEA	BILIDADE	(k)
	MINAÇÃO Nº		1	2	3	
Dia / Mês / Ano	4 0	-	/2005	14/11/2005	16/11/	
Hora / Minuto / Segundo			:00	00:00	00:	
Hora / Minuto / Segundo	1 /		:54	02:55	05:	
Área do tubo de carga			19	5,19	5,1	
Altura do corpo de prova	` '		,50	11,50	11,	
Área do corpo de prova	•		2,65 5,50	182,65	182	•
Altura inicial d' água (c	<u> </u>			204,70	205	
<u> </u>	m) - h1 -		4,70	204,50	205	
Temperatura do ensaio	\	-	4,2	24,0	24	
Tempo de ensaio	(seg) - t -	-	440	10500	180	
Coeficiente de Permeab	oilidade (cm/seg) - k -	4,06	E-08	2,76E-08	8,01	Ξ-09
Observacoes: Solo-D (Es	quina Renz)		k =	2,54E-10	m/s	

ANEXO VII

Planilha dos ensaios de cisalhamento direto

<u>ENSAIO DE CISALHAMENTO DIRETO</u> LABORATÓRIO DE MECÂNICA DOS SOLOS - UNIJUÍ/RS

Campus - Ijuí Amostra: Solo - A Local: 26/08/2003 e 27/08/2003 Data: h ot (%): 32,30 Pressão vertical (kPa): 30,00 Carga normal (kgf): 7,65 Volume (cm³): 50,24 Peso da amostra (g): 93,92 γd (kN/m³): 13,91 0,031 Velocidade do ensaio (mm/min): Compr./Larg./Altura da amostra (cm): 5,05 x 5,05 x 1,97 γn (kN/m³): 18,69 $\gamma d_{máx}(kN/m^3)$: 13,93 GC(%): 99,9 Inundado (X Condições do ensaio: Natural (Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO		
Nº da cápsula:	41	45	58	54	
Peso da cápsula (g):	17,63	18,85	20,56	19,51	
Cáp. + solo úmido (g):	65,77	64,26	74,87	59,25	
Cáp. + solo seco (g):	53,47	52,63	59,63	47,52	
Teor de umidade médio (%):	3	34,37		40,44	

Leitura no aparelho			DADOS TRABALHADOS					
Dh Dv D Anel		Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)		
5	5,00	0,00	0	0,00	2 7 ii.e. (iig.)	25,5025	0,00	
5,2	5,00	0,24	0,2	0,00	4,38886	25,4015	17,28	
5,4	5,00	0,36	0,4	0,00	7,37974	25,3005	29,17	
5,6	5,00	0,40	0,6	0,00	8,37670	25,1995	33,24	
5,8	5,00	0,43	0,8	0,00	9,12442	25,0985	36,35	
6	5,01	0,46	1	0,00	9,87214	24,9975	39,49	
6,2	5,03	0,48	1,2	0,01	10,37062	24,8965	41,65	
6,4	5,03	0,48	1,4	0,03	10,37062	24,7955	41,82	
6,6	5,03	0,40	1,6	0,03	10,37002	24,6945	40,99	
6,8	5,04	0,46	1,8	0,03	9,87214	24,5935	40,14	
7	5,04	0,44	2	0,04	9,37366	24,4925	38,27	
7,2	5,04	0,44	2,2	0,04	9,12442	24,3915	37,41	
7,2	5,03	0,43	2,2	0,04	9,12442	24,2905	37,56	
7,4	5,03	0,43	2,4	0,03	9,37366	24,1895	38,75	
7,8	5,03	0,44	2,8	0,03	9,37366	24,0885	38,91	
8	5,02	0,44	3	0,03	9,37366	23,9875	39,08	
8,2	5,02	0,44	3,2	0,02			39,24	
					9,37366	23,8865		
8,4	5,01	0,43	3,4	0,01	9,12442	23,7855	38,36	
8,6	5,00	0,43	3,6	0,00	9,12442	23,6845	38,52	
8,8	5,00	0,43	3,8	0,00	9,12442	23,5835	38,69	
9	5,00	0,43	4	0,00	9,12442	23,4825	38,86	
9,2	5,00	0,43	4,2	0,00	9,12442	23,3815	39,02	
9,4	4,99	0,43	4,4	-0,01	9,12442	23,2805	39,19	
9,6	4,99	0,43	4,6	-0,01	9,12442	23,1795	39,36	
9,8	4,98	0,43	4,8	-0,02	9,12442	23,0785	39,54	
10	4,98	0,43	5	-0,02	9,12442	22,9775	39,71	
10,2	4,98	0,43	5,2	-0,02	9,12442	22,8765	39,89	
10,4	4,98	0,43	5,4	-0,02	9,12442	22,7755	40,06	
10,6	4,98	0,43	5,6	-0,02	9,12442	22,6745	40,24	
10,8	4,98	0,43	5,8	-0,02	9,12442	22,5735	40,42	
11	4,98	0,43	6	-0,02	9,12442	22,4725	40,60	
11,2	4,99	0,43	6,2	-0,01	9,12442	22,3715	40,79	
11,4	4,99	0,43	6,4	-0,01	9,12442	22,2705	40,97	
11,6	4,99	0,44	6,6	-0,01	9,37366	22,1695	42,28	
11,8	4,99	0,43	6,8	-0,01	9,12442	22,0685	41,35	
12	4,99	0,43	7	-0,01	9,12442	21,9675	41,54	
12,2	4,99	0,43	7,2	-0,01	9,12442	21,8665	41,73	
12,4	4,99	0,43	7,4	-0,01	9,12442	21,7655	41,92	
12,6	4,98	0,43	7,6	-0,03	9,12442	21,6645	42,12	
12,8	4,97	0,43	7,8	-0,03	9,12442	21,5635	42,31	
13	4,97	0,43	8	-0,03	9,12442	21,4625	42,51	
13,2	4,97	0,43	8,2	-0,03	9,12442	21,3615	42,71	
13,4	4,97	0,43	8,4	-0,03	9,12442	21,2605	42,92	
13,6	4,98	0,43	8,6	-0,03	9,12442	21,1595	43,12	
13,8	4,98	0,42	8,8	-0,02	8,87518	21,0585	42,15	
14	4,98	0,42	9	-0,02	8,87518	20,9575	42,35	
14,2	4,98	0,41	9,2	-0,02	8,62594	20,8565	41,36	
14,4	4,98	0,41	9,4	-0,02	8,62594	20,7555	41,56	
14,6	4,98	0,42	9,6	-0,02	8,87518	20,6545	42,97	
14,8	4,98	0,41	9,8	-0,02	8,62594	20,5535	41,97	
15	4,98	0,41	10	-0,02	8,62594	20,4525	42,18	

Campus - Ijuí 25/08/2003 e 26/08/2003 Local: Amostra: Solo - A Data: h ot (%): 32,30 15,30 Pressão vertical (kPa): 60,00 Carga normal (kgf): Volume (cm³): 50,4
Velocidade do ensaio (mm/min): 50,24 Peso da amostra (g): 93,20 0,031 γd (kN/m³): 13,86 Compr./Larg./Altura da amostra (cm): 5,05 x 5,05 x 1,97 γn (kN/m³): 18,55 $\gamma d_{máx}(kN/m^3)$: 13,93 GC(%): 99,5 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	53	55	49	44
Peso da cápsula (g):	19,1	21,82	19,07	17,18
Cáp. + solo úmido (g):	68,94	63,36	60,2	68,57
Cáp. + solo seco (g):	56,34	52,85	48,19 52,56	
Teor de umidade médio (%):	33,85		43,25	

Leitura no	aparelho)		D	ADOS TRAB	ALHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
8	5,00	0,00	0	0,00	2 7 ii.e. (iig.)	25,5025	0,00
8,2	4,97	0,33	0,2	-0,03	6,63202	25,4015	26,11
8,4	4,94	0,38	0,4	-0,06	7,87822	25,3005	31,14
8,6	4,91	0,42	0,6	-0,09	8,87518	25,1995	35,22
8,8	4,89	0,48	0,8	-0,11	10,37062	25,0985	41,32
9	4,86	0,51	1	-0,14	11,11834	24,9975	44,48
9,2	4,84	0,53	1,2	-0,16	11,61682	24,8965	46,66
9,4	4,82	0,55	1,4	-0,18	12,11530	24,7955	48,86
9,6	4,81	0,53	1,6	-0,19	12,11330	24,6945	51,08
9,8	4,80	0,57	1,8	-0,21	13,11226	24,5935	53,32
10	4,78	0,60	2	-0,22	13,36150	24,4925	54,55
10,2	4,77	0,61	2,2	-0,24	13,61074	24,3915	55,80
10,2	4,75	0,63	2,2	-0,25	14,10922	24,2905	58,09
10,4	4,74	0,63	2,4	-0,25	14,10922	24,1895	58,33
10,8	4,74	0,63	2,8	-0,26	14,10922	24,1895	58,57
11	4,74	0,63	3	-0,26	14,10922	23,9875	58,82
11,2	4,74	0,63	3,2	-0,26	14,10922	23,8865	60,11
11,2		0,64	3,4	-0,20		23,7855	
	4,73 4,73	0,64	3,4 3,6	-0,27 -0,27	14,35846 14,10922	23,7655	60,37 59,57
11,6							59,57 57,71
11,8 12	4,73	0,61 0,60	3,8 4	-0,27	13,61074	23,5835	,
	4,73			-0,27	13,36150	23,4825	56,90
12,2	4,73	0,60	4,2	-0,27	13,36150	23,3815	57,15
12,4	4,73	0,58	4,4	-0,28	12,86302	23,2805	55,25
12,6	4,70	0,60	4,6	-0,30	13,36150	23,1795	57,64 58,98
12,8	4,70	0,61	4,8	-0,30	13,61074	23,0785	,
13	4,70	0,61	5	-0,31	13,61074	22,9775	59,24
13,2	4,69	0,61	5,2	-0,31	13,61074	22,8765	59,50
13,4	4,69	0,60	5,4	-0,31	13,36150	22,7755	58,67
13,6	4,69	0,59	5,6	-0,31	13,11226	22,6745	57,83
13,8 14	4,69	0,58	5,8 6	-0,32	12,86302	22,5735	56,98
	4,69	0,58		-0,32	12,86302	22,4725	57,24
14,2	4,69	0,58	6,2	-0,32	12,86302	22,3715	57,50
14,4	4,69	0,58	6,4	-0,32	12,86302	22,2705	57,76
14,6	4,68	0,57	6,6	-0,32	12,61378	22,1695	56,90
14,8	4,68	0,57	6,8	-0,33	12,61378	22,0685	57,16
15	4,67	0,57	7	-0,33	12,61378	21,9675	57,42
15,2	4,67	0,56	7,2	-0,34	12,36454	21,8665	56,55
15,4	4,66	0,56	7,4	-0,34	12,36454	21,7655	56,81
15,6	4,66	0,55	7,6	-0,35	12,11530	21,6645	55,92
15,8	4,66	0,55	7,8	-0,35	12,11530	21,5635	56,18
16	4,66	0,55	8	-0,35	12,11530	21,4625	56,45
16,2	4,65	0,54	8,2	-0,35	11,86606	21,3615	55,55
16,4	4,65	0,55	8,4	-0,35	12,11530	21,2605	56,99
16,6	4,65	0,54	8,6	-0,35	11,86606	21,1595	56,08
16,8	4,65	0,54	8,8	-0,35	11,86606	21,0585	56,35
17	4,64	0,53	9	-0,36	11,61682	20,9575	55,43
17,2	4,64	0,53	9,2	-0,37	11,61682	20,8565	55,70
17,4	4,63	0,53	9,4	-0,37	11,61682	20,7555	55,97
17,6	4,63	0,53	9,6	-0,37	11,61682	20,6545	56,24
17,8	4,63	0,53	9,8	-0,37	11,61682	20,5535	56,52
18	4,63	0,53	10	-0,37	11,61682	20,4525	56,80

Campus - Ijuí 27/08/2003 e 28/08/2003 Local: Amostra: Solo - A h ot (%): 32,30 Data: Carga normal (kgf): Pressão vertical (kPa): 100,00 25,50 Volume (cm³): 50,24 Peso da amostra (g): 94,27 Velocidade do ensaio (mm/min): 0,031 γd (kN/m³): 13,99 Compr./Larg./Altura da amostra (cm): 5,05 x 5,05 x 1,97 $\gamma n (kN/m^3): 18,76$ $\gamma d_{máx}(kN/m^3)$: 13,93 GC(%): 100,4 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	40	46	40	46
Peso da cápsula (g):	18,39	19,05	18,34	19,14
Cáp. + solo úmido (g):	61,06	67,36	62,06	67,02
Cáp. + solo seco (g):	50,17	55,12	49,06 53,3	
Teor de umidade médio (%):	34,10		41,24	

Leitura no	o aparelho)		D.	ADOS TRAB	ALHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
5	4,00	0,00	0	0,00		25,5025	0,00
5,2	3,98	0,29	0,2	-0,02	5,63506	25,4015	22,18
5,4	3,95	0,39	0,4	-0,05	8,12746	25,3005	32,12
5,6	3,93	0,48	0,6	-0,07	10,37062	25,1995	41,15
5,8	3,88	0,55	0,8	-0,12	12,11530	25,0985	48,27
6	3,84	0,61	1	-0,16	13,61074	24,9975	54,45
6,2	3,79	0,67	1,2	-0,21	15,10618	24,8965	60,68
6,4	3,75	0,71	1,4	-0,25	16,10314	24,7955	64,94
6,6	3,72	0,77	1,6	-0,28	17,59858	24,6945	71,27
6,8	3,70	0,81	1,8	-0,31	18,59554	24,5935	75,61
7	3,68	0,84	2	-0,32	19,34326	24,4925	78,98
7,2	3,67	0,86	2,2	-0,33	19,84174	24,3915	81,35
7,4	3,66	0,88	2,4	-0,34	20,34022	24,2905	83,74
7,6	3,65	0,93	2,6	-0,35	21,58642	24,1895	89,24
7,8	3,65	0,92	2,8	-0,35	21,33718	24,0885	88,58
8	3,65	0,91	3	-0,36	21,08794	23,9875	87,91
8,2	3,64	0,88	3,2	-0,36	20,34022	23,8865	85,15
8,4	3,64	0,88	3,4	-0,36	20,34022	23,7855	85,52
8,6	3,64	0,86	3,6	-0,37	19,84174	23,6845	83,78
8,8	3,63	0,86	3,8	-0,37	19,84174	23,5835	84,13
9	3,63	0,87	4	-0,37	20,09098	23,4825	85,56
9,2	3,63	0,87	4,2	-0,37	20,09098	23,3815	85,93
9,4	3,63	0,84	4,4	-0,37	19,34326	23,2805	83,09
9,6	3,63	0,84	4,4 4,6	-0,37	19,09402	23,1795	82,37
9,8	3,63	0,83	4,8 4,8	-0,37	19,09402	23,1795	83,82
10	3,63	0,84	5	-0,37	19,09402	22,9775	83,10
10,2	3,63	0,83	5,2	-0,38	18,84478	22,8765	82,38
10,2	3,62	0,82	5,2 5,4	-0,38 -0,38	18,84478	22,7755	82,74
	3,62	0,82			18,84478	22,6745	83,11
10,6 10,8	3,62	0,82	5,6 5,8	-0,38 -0,38	18,84478	22,5735	83,48
10,8	3,62	0,82	6	-0,39	18,59554	22,4725	82,75
		0,81					
11,2 11,4	3,62 3,62	0,81	6,2	-0,39 -0,39	18,59554 18,59554	22,3715 22,2705	83,12 83,50
			6,4	-0,39 -0,39	18,84478	·	•
11,6	3,61 3,61	0,82 0,82	6,6			22,1695 22,0685	85,00 85,39
11,8 12	3,61	0,82	6,8 7	-0,39 -0,39	18,84478 18,84478	21,9675	85,78
12,2	3,61	0,82	7,2	-0,39	19,09402	21,8665	87,32
12,2	3,61	0,83	7,2 7,4	-0,39 -0,39	18,84478	21,7655	86,58
				-0,39 -0,39	18,84478		
12,6 12,8	3,61	0,82 0,81	7,6 7.8	-0,39 -0,40	18,59554	21,6645 21,5635	86,98 86,24
	3,61		7,8	-0,40	18,59554	·	,
13 13,2	3,60	0,81	8	-0,40 -0,40		21,4625	86,64 87.05
	3,60	0,81	8,2		18,59554	21,3615	87,05 87,47
13,4	3,60	0,81	8,4	-0,40	18,59554	21,2605	87,47
13,6	3,60	0,80	8,6	-0,40	18,34630	21,1595	86,70
13,8	3,60	0,80	8,8	-0,40	18,34630	21,0585	87,12
14	3,60	0,80	9	-0,40	18,34630	20,9575	87,54
14,2	3,60	0,80	9,2	-0,40	18,34630	20,8565	87,96
14,4	3,60	0,79	9,4	-0,40	18,09706	20,7555	87,19
14,6	3,60	0,78	9,6	-0,40	17,84782	20,6545	86,41
14,8	3,60	0,78	9,8	-0,40	17,84782	20,5535	86,84
15	3,60	0,78	10	-0,40	17,84782	20,4525	87,26

Local: Campus - Ijuí Amostra: Solo - A 28/08/2003 e 29/08/2003 h ot (%): 32,30 Data: Carga normal (kgf): 51,00 Pressão vertical (kPa): 200,00 Volume (cm³): 50, Velocidade do ensaio (mm/min): 50,24 Peso da amostra (g): 94,09 γd (kN/m³): 13,97 0,031 Compr./Larg./Altura da amostra (cm): 5,05 x 5,05 x 1,97 γ n (kN/m³): 18,73 $\gamma d_{máx}(kN/m^3)$: 13,93 GC(%): 100,3 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	41	45	41	45
Peso da cápsula (g):	17,64	18,87	17,63 18,86	
Cáp. + solo úmido (g):	64,4	64,33	61,22	65,96
Cáp. + solo seco (g):	52,52	52,8	49,17 52,7	
Teor de umidade médio (%):	34	4,02	38,69	

Leitura no	o aparelho)		D	ADOS TRAB	ALHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	4,00	0,00	0	0,00		25,5025	0,00
6,2	3,98	0,59	0,2	-0,02	13,11226	25,4015	51,62
6,4	3,92	0,69	0,4	-0,08	15,60466	25,3005	61,68
6,6	3,88	0,82	0,6	-0,13	18,84478	25,1995	74,78
6,8	3,83	0,95	0,8	-0,17	22,08490	25,0985	87,99
7	3,78	1,05	1	-0,22	24,57730	24,9975	98,32
7,2	3,74	1,12	1,2	-0,27	26,32198	24,8965	105,73
7,4	3,69	1,19	1,4	-0,31	28,06666	24,7955	113,19
7,6	3,65	1,25	1,6	-0,35	29,56210	24,6945	119,71
7,8	3,61	1,29	1,8	-0,40	30,55906	24,5935	124,26
8	3,57	1,33	2	-0,43	31,55602	24,4925	128,84
8,2	3,54	1,38	2,2	-0,46	32,80222	24,3915	134,48
8,4	3,52	1,38	2,4	-0,48	32,80222	24,2905	135,04
8,6	3,49	1,41	2,6	-0,52	33,54994	24,1895	140,00
8,8	3,47	1,40	2,8	-0,53	33,30070	24,0885	138,24
9	3,46	1,39	3	-0,54	33,05146	23,9875	137,79
9,2	3,45	1,36	3,2	-0,55	32,30374	23,8865	135,24
9,4	3,45	1,34	3,4	-0,55	31,80526	23,7855	133,72
9,6	3,44	1,32	3,6	-0,56	31,30678	23,6845	132,18
9,8	3,44	1,33	3,8	-0,56	31,55602	23,5835	133,81
10	3,43	1,32	4	-0,57	31,30678	23,4825	133,32
10,2	3,43	1,33	4,2	-0,58	31,55602	23,3815	134,96
10,4	3,42	1,33	4,4	-0,58	31,55602	23,2805	135,55
10,6	3,41	1,32	4,6	-0,59	31,30678	23,1795	135,06
10,8	3,41	1,32	4,8	-0,59	31,30678	23,0785	135,65
11	3,40	1,33	5	-0,60	31,55602	22,9775	137,33
11,2	3,40	1,33	5,2	-0,60	31,55602	22,8765	137,94
11,4	3,40	1,32	5,4	-0,61	31,30678	22,7755	137,46
11,6	3,39	1,33	5,6	-0,62	31,55602	22,6745	139,17
11,8	3,38	1,33	5,8	-0,62	31,55602	22,5735	139,79
12	3,38	1,31	6	-0,62	31,05754	22,4725	138,20
12,2	3,37	1,31	6,2	-0,63	31,05754	22,3715	138,83
12,4	3,37	1,32	6,4	-0,64	31,30678	22,2705	140,58
12,6	3,36	1,33	6,6	-0,64	31,55602	22,1695	142,34
12,8	3,35	1,33	6,8	-0,65	31,55602	22,0685	142,99
13	3,35	1,31	7	-0,65	31,05754	21,9675	141,38
13,2	3,35	1,30	7,2	-0,66	30,80830	21,8665	140,89
13,4	3,34	1,29	7,4	-0,66	30,55906	21,7655	140,40
13,6	3,34	1,29	7,6	-0,67	30,55906	21,6645	141,06
13,8	3,33	1,30	7,8	-0,67	30,80830	21,5635	142,87
14	3,33	1,29	8	-0,67	30,55906	21,4625	142,38
14,2	3,33	1,29	8,2	-0,68	30,55906	21,3615	143,06
14,4	3,32	1,29	8,4	-0,68	30,55906	21,2605	143,74
14,6	3,32	1,29	8,6	-0,69	30,55906	21,1595	144,42
14,8	3,31	1,30	8,8	-0,69	30,80830	21,0585	146,30
15	3,31	1,28	9	-0,69	30,30982	20,9575	144,63
15,2	3,30	1,28	9,2	-0,70	30,30982	20,8565	145,33
15,4	3,30	1,28	9,4	-0,70	30,30982	20,7555	146,03
15,6	3,30	1,29	9,6	-0,70	30,55906	20,6545	147,95
15,8	3,30	1,28	9,8	-0,70	30,30982	20,5535	147,47
16	3,30	1,28	10	-0,70	30,30982	20,4525	148,20
	0,00	1,20	10	0,10	50,0000E	20, 1023	110,20

Chorão - Ijuí 08/11/2005 e 09/11/2005 Local: Amostra: Solo - B Data: h ot (%): 36,00 Carga normal (kgf): 7,52 Pressão vertical (kPa): 30,00 Volume (cm³): 50,10 Peso da amostra (g): 94,03 Velocidade do ensaio (mm/min): 0,031 γd (kN/m³): 13,56 Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 18,77 $\gamma d_{máx}(kN/m^3)$: 13,80 GC(%): 98,3 Condições do ensaio: Natural (Inundado (X Residual (

Determinação da umidade:	ANTES	SENSAIO	DEPOIS ENSAIO
Nº da cápsula:	12	20	
Peso da cápsula (g):	19,34	19,15	
Cáp. + solo úmido (g):	58,29	56,50	
Cáp. + solo seco (g):	47,46	46,16	
Teor de umidade médio (%):	3	8,40	

Leitura no	aparelho)			ADOS TRABA		
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	5,00	0,42	0,2	0,00	8,87518	24,9499	35,57
6,4	5,00	0,44	0,4	0,00	9,37366	24,8498	37,72
6,6	5,00	0,45	0,6	0,00	9,62290	24,7497	38,88
6,8	5,01	0,45	0,8	0,01	9,62290	24,6496	39,04
7	5,01	0,45	1	0,01	9,62290	24,5495	39,20
7,2	5,01	0,45	1,2	0,01	9,62290	24,4494	39,36
7,4	5,01	0,46	1,4	0,01	9,87214	24,3493	40,54
7,6	5,02	0,45	1,6	0,02	9,62290	24,2492	39,68
7,8	5,02	0,45	1,8	0,02	9,62290	24,1491	39,85
8	5,02	0,45	2	0,02	9,62290	24,0490	40,01
8,2	5,02	0,45	2,2	0,02	9,62290	23,9489	40,18
8,4	5,03	0,45	2,4	0,03	9,62290	23,8488	40,35
8,6	5,03	0,44	2,6	0,03	9,37366	23,7487	39,47
8,8	5,04	0,44	2,8	0,04	9,37366	23,6486	39,64
9	5,05	0,43	3	0,05	9,12442	23,5485	38,75
9,2	5,05	0,43	3,2	0,05	9,12442	23,4484	38,91
9,4	5,06	0,43	3,4	0,06	9,12442	23,3483	39,08
9,6	5,07	0,42	3,6	0,07	8,87518	23,2482	38,18
9,8	5,07	0,42	3,8	0,07	8,87518	23,1481	38,34
10	5,08	0,41	4	0,08	8,62594	23,0480	37,43
10,2	5,08	0,41	4,2	0,08	8,62594	22,9479	37,59
10,4	5,09	0,41	4,4	0,09	8,62594	22,8478	37,75
10,6	5,09	0,41	4,6	0,09	8,62594	22,7477	37,92
10,8	5,10	0,40	4,8	0,10	8,37670	22,6476	36,99
11	5,10	0,41	5	0,10	8,62594	22,5475	38,26
11,2	5,11	0,40	5,2	0,11	8,37670	22,4474	37,32
11,4	5,11	0,40	5,4	0,11	8,37670	22,3473	37,48
11,6	5,12	0,40	5,6	0,12	8,37670	22,2472	37,65
11,8	5,12	0,41	5,8	0,12	8,62594	22,1471	38,95
12	5,13	0,41	6	0,13	8,62594	22,0470	39,13
12,2	5,13	0,41	6,2	0,13	8,62594	21,9469	39,30
12,4	5,13	0,41	6,4	0,13	8,62594	21,8468	39,48
12,6	5,13	0,41	6,6	0,13	8,62594	21,7467	39,67
12,8	5,13	0,40	6,8	0,13	8,37670	21,6466	38,70
13	5,14	0,41	7	0,14	8,62594	21,5465	40,03
13,2	5,14	0,41	7,2	0,14	8,62594	21,4464	40,22
13,4	5,14	0,41	7,4	0,14	8,62594	21,3463	40,41
13,6	5,14	0,41	7,6	0,14	8,62594	21,2462	40,60
13,8	5,14	0,41	7,8	0,14	8,62594	21,1461	40,79
14	5,14	0,41	8	0,14	8,62594	21,0460	40,99
14,2	5,14	0,41	8,2	0,14	8,62594	20,9459	41,18
14,4	5,14	0,41	8,4	0,14	8,62594	20,8458	41,38
14,6	5,14	0,41	8,6	0,14	8,62594	20,7457	41,58
14,8	5,14	0,41	8,8	0,14	8,62594	20,6456	41,78
15	5,14	0,41	9	0,14	8,62594	20,5455	41,98
15,2	5,14	0,41	9,2	0,14	8,62594	20,4454	42,19
15,4	5,14	0,41	9,4	0,14	8,62594	20,3453	42,40
15,6	5,15	0,41	9,6	0,15	8,62594	20,2452	42,61
15,8	5,15	0,41	9,8	0,15	8,62594	20,1451	42,82
16	5,15	0,41	10	0,15	8,62594	20,0450	43,03

Chorão - Ijuí 09/11/2005 e 10/11/2005 Amostra: Solo - B Local: Data: h ot (%): 36,00 Pressão vertical (kPa): 60,00 Carga normal (kgf): 15,03 Volume (cm³): 50,10 Peso da amostra (g): 94,03 γd (kN/m³): 13,61 0,031 Velocidade do ensaio (mm/min): Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 18,77 $\gamma d_{máx}(kN/m^3)$: 13,80 GC(%): 98,6 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	2	3		
Peso da cápsula (g):	16,66	19,10		
Cáp. + solo úmido (g):	47,89	49,86		
Cáp. + solo seco (g):	39,31	41,39		
Teor de umidade médio (%):	3	7,94		

Leitura no	o aparelho)	DADOS TRABALHADOS				
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	3,00	0,00	0	0,00		25,0500	0,00
6,2	2,97	0,37	0,2	-0,03	7,62898	24,9499	30,58
6,4	2,96	0,41	0,4	-0,04	8,62594	24,8498	34,71
6,6	2,93	0,48	0,6	-0,07	10,37062	24,7497	41,90
6,8	2,91	0,52	0,8	-0,09	11,36758	24,6496	46,12
7	2,90	0,53	1	-0,10	11,61682	24,5495	47,32
7,2	2,89	0,54	1,2	-0,11	11,86606	24,4494	48,53
7,4	2,88	0,54	1,4	-0,12	11,86606	24,3493	48,73
7,6	2,87	0,54	1,6	-0,13	11,86606	24,2492	48,93
7,8	2,87	0,54	1,8	-0,13	11,86606	24,1491	49,14
8	2,86	0,54	2	-0,14	11,86606	24,0490	49,34
8,2	2,86	0,53	2,2	-0,14	11,61682	23,9489	48,51
8,4	2,86	0,53	2,4	-0,14	11,61682	23,8488	48,71
8,6	2,86	0,53	2,6	-0,14	11,61682	23,7487	48,92
8,8	2,86	0,52	2,8	-0,14	11,36758	23,6486	48,07
9	2,85	0,52	3	-0,15	11,36758	23,5485	48,27
9,2	2,85	0,52	3,2	-0,15	11,36758	23,4484	48,48
9,4	2,85	0,51	3,4	-0,15	11,11834	23,3483	47,62
9,6	2,85	0,51	3,6	-0,15	11,11834	23,2482	47,82
9,8	2,85	0,51	3,8	-0,15	11,11834	23,1481	48,03
10	2,85	0,50	4	-0,15	10,8691	23,0480	47,16
10,2	2,85	0,49	4,2	-0,15	10,61986	22,9479	46,28
10,4	2,85	0,49	4,4	-0,15	10,61986	22,8478	46,48
10,6	2,85	0,49	4,6	-0,15	10,61986	22,7477	46,69
10,8	2,85	0,49	4,8	-0,15	10,61986	22,6476	46,89
11	2,85	0,51	5	-0,15	11,11834	22,5475	49,31
11,2	2,85	0,51	5,2	-0,15	11,11834	22,4474	49,53
11,4	2,85	0,51	5,4	-0,15	11,11834	22,3473	49,75
11,6	2,85	0,51	5,6	-0,15	11,11834	22,2472	49,98
11,8	2,85	0,52	5,8	-0,15	11,36758	22,1471	51,33
12	2,85	0,52	6	-0,15	11,36758	22,0470	51,56
12,2	2,85	0,52	6,2	-0,15	11,36758	21,9469	51,80
12,4	2,85	0,52	6,4	-0,15	11,36758	21,8468	52,03
12,6	2,85	0,52	6,6	-0,15	11,36758	21,7467	52,27
12,8	2,84	0,53	6,8	-0,16	11,61682	21,6466	53,67
13	2,84	0,52	7	-0,16	11,36758	21,5465	52,76
13,2	2,84	0,52	7,2	-0,16	11,36758	21,4464	53,00
13,4	2,84	0,52	7,4	-0,16	11,36758	21,3463	53,25
13,6	2,84	0,52	7,6	-0,16	11,36758	21,2462	53,50
13,8	2,84	0,52	7,8	-0,16	11,36758	21,1461	53,76
14	2,84	0,53	8	-0,16	11,61682	21,0460	55,20
14,2	2,84	0,53	8,2	-0,16	11,61682	20,9459	55,46
14,4	2,84	0,53	8,4	-0,16	11,61682	20,8458	55,73
14,6	2,83	0,53	8,6	-0,17	11,61682	20,7457	56,00
14,8	2,83	0,52	8,8	-0,17	11,36758	20,6456	55,06
15	2,83	0,51	9	-0,17	11,11834	20,5455	54,12
15,2	2,83	0,51	9,2	-0,17	11,11834	20,4454	54,38
15,4	2,83	0,51	9,4	-0,17	11,11834	20,3453	54,65
15,6	2,83	0,52	9,6	-0,17	11,36758	20,2452	56,15
15,8	2,83	0,52	9,8	-0,17	11,36758	20,1451	56,43
16	2,83	0,52	10	-0,17	11,36758	20,0450	56,71
.0	_,50	0,02		5,11	,557 55	20,0100	55,11

Local: Chorão - Ijuí Amostra: Solo - B 10/11/2005 e 11/11/2005 Data: h ot (%): 36,00 Carga normal (kgf): 25,05 Pressão vertical (kPa): 100,00 50,10 Volume (cm³): Peso da amostra (g): 94,03 Velocidade do ensaio (mm/min): $\gamma d (kN/m^3)$: 13,64 0,031 Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 $\gamma n (kN/m^3): 18,77$ $\gamma d_{m\acute{a}x}(kN/m^3)$: 13,80 GC(%): 98,8 Residual (Condições do ensaio: Natural (Inundado (X)

Determinação da umidade:	ANTES	SENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	6	20		
Peso da cápsula (g):	17,60	19,12		
Cáp. + solo úmido (g):	49,47	52,28		
Cáp. + solo seco (g):	40,75	43,23		
Teor de umidade médio (%):	37,60			

DN	Leitura no	aparelho)		D	ADOS TRAB	ALHADOS	
6 5.00 0.00 0.0 0 0.00 0 0.00 6.2 25,050 0.00 0.00 6.2 4,98 0.64 0.2 -0.02 14,35846 24,9499 57,68 6.4 4,97 0.81 0.4 -0.03 18,59554 24,8498 74,83 6.6 4,97 0.87 0.6 -0.03 20,0909 24,7497 81,18 6.8 4,96 0.91 0.8 -0.04 21,08794 24,6496 85,55 7 4,96 0.93 1 -0.04 21,58642 24,5495 87,93 7,22 4,95 0.94 1.2 -0.05 21,83566 24,4494 89,31 7,4 4,94 0.94 1.4 -0.06 21,83566 24,3493 89,68 7,6 4,92 0.94 1.6 -0.08 21,83566 24,3493 89,68 7,6 4,92 0.94 1.8 -0.09 21,83566 24,1491 90,42 8 4,90 0.93 2 -0.10 21,58642 24,0490 89,76 8,2 4,88 0.92 2.2 -0.11 21,33718 23,9489 89,09 8.4 4,88 0.92 2.4 -0.12 21,33718 23,9489 89,09 8.4 4,88 0.92 2.4 -0.12 21,33718 23,8488 89,47 8,6 4,87 0.90 2.6 -0.13 20,8387 23,7487 87,75 8,8 4,86 0.88 2.8 -0.14 20,34022 23,6486 86,01 9 4,85 0.86 3, -0.15 19,84174 23,5485 86,2 9,2 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,4 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,6 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,6 -0.15 19,84174 23,3483 84,98 9,6 4,85 0.86 3,6 -0.15 19,84174 23,3483 84,98 9,6 4,86 0.86 4,2 -0.16 19,84174 23,3483 84,98 9,6 4,86 0.86 4,2 -0.16 19,84174 22,3479 86,46 10,4 4,83 0.86 4,2 -0.16 19,84174 22,3479 86,46 10,4 4,83 0.86 4,2 -0.16 19,84174 22,3479 86,46 10,4 4,83 0.86 4,4 -0.17 19,84174 22,3479 86,46 10,4 4,83 0.86 4,2 -0.16 19,84174 22,3479 86,46 10,4 4,83 0.86 4,2 -0.16 19,84174 22,3479 86,46 10,4 4,83 0.86 6,0 -0.19 19,84174 22,3479 86,46 10,4 4,81 0.85 5,4 0.019 19,84174 22,3479 86,46 10,4 4,81 0.85 5,4 0.019 19,84174 22,3479 86,46 10,4 4,81 0.86 5,8 0.019 19,84174 22,3479 86,46 10,4 4,81 0.86 6,0 0.21 19,84174 22,3479 90,00 11,2 4,81 0.86 6,0 0.21 19,84174 22,3475 90,00 11,2 4,81 0.86 6,0 0.21 1				Dh (mm)				Tensão (kPa)
6.2 4.98 0.64 0.2 -0.02 14,35846 24,9499 77,55 6.4 4.97 0.81 0.4 -0.03 18,5954 24,8498 74,83 6.6 4.97 0.87 0.6 -0.03 20,99098 24,7497 81,18 6.8 4.96 0.91 0.8 -0.04 21,08794 24,6496 85,55 7 4.96 0.93 1 -0.04 21,58642 24,5495 87,93 7.2 4.95 0.94 1.2 -0.05 21,83566 24,4494 89,31 7.4 4.94 0.94 1.4 -0.06 21,83566 24,4494 89,31 7.6 4.92 0.94 1.6 -0.08 21,83566 24,4493 99,05 7.8 4.91 0.94 1.8 -0.09 21,83566 24,4491 90,42 8.8 4.90 0.93 2 -0.10 21,83566 24,1491 90,42 8.8 4.90 0.93 2 -0.10 21,58642 24,0490 89,76 8.2 4.89 0.92 2.2 -0.11 21,33718 23,9489 89,09 89,76 8.2 4.89 0.92 2.2 -0.11 21,33718 23,9489 89,09 89,76 8.2 4.89 0.92 2.4 -0.12 21,33718 23,9489 89,09 89,76 8.8 4.86 0.88 2.8 -0.14 20,34022 23,6486 86,01 9 4.85 0.86 3 -0.15 19,84174 23,3485 84,26 9,2 4.85 0.86 3 -0.15 19,84174 23,3485 84,98 9,4 4.85 0.86 3.4 -0.15 19,84174 23,3482 85,53 9.8 4.84 0.86 3.8 -0.16 19,84174 23,3482 85,53 9.8 4.84 0.86 3.8 -0.16 19,84174 23,3482 85,53 9.8 4.84 0.86 4.2 -0.15 19,84174 23,3482 85,53 9.8 4.84 0.86 4.2 -0.16 19,84174 23,3482 86,09 10.2 4.84 0.86 4.2 -0.16 19,84174 23,3482 86,09 10.2 4.84 0.86 4.2 -0.16 19,84174 23,3482 86,09 10.2 4.84 0.86 4.4 -0.16 19,84174 22,9479 86,46 10.4 4.83 0.86 4.4 -0.17 19,84174 22,9479 86,46 10.4 4.83 0.86 4.4 -0.17 19,84174 22,9479 86,46 10.4 4.83 0.86 4.4 -0.17 19,84174 22,9479 86,46 10.4 4.83 0.86 4.4 -0.17 19,84174 22,9479 86,46 10.4 4.83 0.86 4.4 -0.17 19,84174 22,9479 86,46 11.4 4.81 0.85 5.6 -0.18 19,84174 22,9479 86,46 11.4 4.81 0.85 5.6 -0.19 19,34326 22,7477 85,03 10.8 4.82 0.85 5.4 -0.18 19,5925 22,6476 86,51 11 4.82 0.86 5.7 -0.18 19,5925 22,6476 86,51 11 4.82 0.86 6.0 -0.19 19,84174 22,9479 86,46 11.4 4.81 0.85 5.6 -0.19 19,84174 22,9479 86,46 11.4 4.81 0.85 5.6 -0.19 19,5925 22,6476 86,51 11.4 4.80 0.86 6.6 -0.02 19,34326 21,9469 81,14 4.81 0.85 5.6 -0.19 19,5925 22,2472 89,00 11.2 4.81 0.86 6.8 -0.21 19,84174 22,0470 90,00 12.2 4.88 0.86 6.6 -0.02 19,34326 21,9469 81,14 4.77 0.85 8.2 -0.22 19,84174 21,2462 93,39 13.3 4.79 0.86 7.2 -0.22 19,84174 21,2462 93,39 13.3 4.79 0.86 7.6						2 / i.i.e. (i.ig.)		
6.4 4.97 0.81 0.4 -0.03 18.59554 24.8498 74.83 6.6 4.97 0.87 0.6 -0.03 20.09098 24.7497 81.18 6.8 4.96 0.91 0.8 -0.04 21.08794 24.6496 85.55 7 4.96 0.93 1 -0.04 21.58642 24.5495 87.93 7.2 4.95 0.94 1.2 -0.05 21.83566 24.4494 89.31 7.4 4.94 0.94 1.4 -0.06 21.83566 24.4494 99.31 7.6 4.92 0.94 1.6 -0.08 21.83566 24.4492 90.05 7.8 4.91 0.94 1.8 -0.09 21.83566 24.1491 90.42 8 4.90 0.93 2 -0.10 21.58642 24.0490 89.76 82.4 4.89 0.92 2.4 -0.12 21.33718 23.9489 89.09 88.4 4.88 0.92 2.4 -0.12 21.33718 23.9489 89.09 8.4 4.88 0.92 2.4 -0.12 21.33718 23.9489 89.09 8.8 4.86 0.88 2.8 -0.14 20.34022 23.6486 86.01 9 4.85 0.86 3 -0.15 19.84174 23.3485 84.26 9.2 4.85 0.86 3.4 -0.15 19.84174 23.3485 84.26 9.2 4.85 0.86 3.4 -0.15 19.84174 23.3482 85.35 9.8 4.84 0.86 3.8 -0.15 19.84174 23.3482 85.35 9.8 4.84 0.86 4.8 -0.16 19.84174 23.3482 85.35 9.8 4.84 0.86 4.9 0.86 4.0 -0.16 19.84174 23.3482 85.35 9.8 4.84 0.86 4.9 0.86 4.0 -0.16 19.84174 23.3482 85.35 10.4 4.83 0.86 4.4 -0.16 19.84174 23.3482 86.09 10.2 4.84 0.86 4.4 -0.16 19.84174 23.0480 86.09 10.2 4.84 0.86 4.4 -0.16 19.84174 23.0480 86.09 10.2 4.84 0.86 4.4 -0.16 19.84174 23.0480 86.09 10.2 4.84 0.86 4.2 -0.16 19.84174 23.0480 86.09 10.2 4.84 0.86 4.4 -0.17 19.84174 22.9479 86.46 10.6 4.83 0.84 4.6 -0.17 19.84174 22.9479 86.46 10.6 4.83 0.84 4.6 -0.17 19.84174 22.9479 86.46 10.6 4.83 0.84 4.6 -0.17 19.84174 22.9479 86.46 10.6 4.83 0.84 4.6 -0.17 19.84174 22.9479 86.46 11.4 4.81 0.85 5.4 -0.18 19.84174 22.9470 80.00 11.2 4.84 0.86 5.8 -0.18 19.84174 22.9470 80.00 11.2 4.81 0.85 5.6 -0.19 19.5925 22.6476 86.51 11.4 4.82 0.86 5.8 -0.19 19.5925 22.6476 86.51 11.4 4.81 0.85 5.6 -0.19 19.5925 22.2472 88.07 11.6 4.81 0.85 5.6 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.85 5.6 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.85 5.6 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.85 5.6 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.86 6.8 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.85 5.4 -0.19 19.5925 22.2472 88.07 11.4 4.81 0.86 6.8 -0.21 19.84174 22.1462 93.39 13.3 4.79 0.86 7.4 -0.22 19.84174 22.1462 93.39 13.						14.35846		
6.6							•	
6.8 4,96 0,91 0,8 -0,04 21,58642 24,5495 87,93 7,2 4,95 0,94 1,2 -0,05 21,83566 24,4494 89,31 7,4 4,94 0,94 1,4 -0,06 21,83566 24,3493 89,68 7,6 4,92 0,94 1,4 -0,06 21,83566 24,3493 89,68 7,8 4,91 0,94 1,8 -0,09 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,2 -0,11 21,33718 23,8488 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6488 84,26 9,2								
7 4,96 0,93 1 -0,04 21,88642 24,5495 87,93 7,2 4,95 0,94 1,2 -0,05 21,83566 24,3493 89,68 7,6 4,92 0,94 1,6 -0,08 21,83566 24,2492 90,05 7,8 4,91 0,94 1,6 -0,08 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,85662 24,1491 90,42 8 4,89 0,92 2,2 -0,11 21,33718 23,9489 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,9489 89,09 8,4 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2								
7,2 4,95 0,94 1,2 -0,05 21,83566 24,4494 89,31 7,4 4,94 0,94 1,6 -0,08 21,83566 24,2492 90,05 7,8 4,91 0,94 1,6 -0,08 21,83566 24,2492 90,05 7,8 4,91 0,94 1,8 -0,09 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,2 -0,11 21,33718 23,8488 89,09 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,4848 85,68 9,4								
7,4 4,94 0,94 1,4 -0,06 21,83566 24,3493 89,68 7,6 4,92 0,94 1,8 -0,09 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,2 -0,11 21,33718 23,9489 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,3483 84,98 9,8								
7,6 4,92 0,94 1,6 -0,08 21,83566 24,2492 90,05 7,8 4,91 0,94 1,8 -0,09 21,83566 24,1491 90,42 8 4,90 0,93 2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,2 -0,11 21,33718 23,9489 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,9489 89,09 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87.75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,26 9,4 4,85 0,86 3,6 -0,15 19,84174 23,4484 85,35 9,8								
7,8 4,91 0,94 1,8 -0,09 21,83566 24,1491 90,42 8 4,89 0,92 2,2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,4 -0,12 21,33718 23,9489 89,09 8,4 4,86 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,3802 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,4484 85,68 9,4 4,85 0,86 3,6 -0,15 19,84174 23,2482 85,35 9,8 4,84 0,86 4 -0,16 19,84174 23,4484 85,68 10,2								
8 4,90 0,93 2 -0,10 21,58642 24,0490 89,76 8,2 4,89 0,92 2,2 -0,11 21,33718 23,9489 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 20,09098 23,4484 85,68 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,4482 85,55 9,8 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2								
8,2 4,89 0,92 2,2 -0,11 21,33718 23,9489 89,09 8,4 4,88 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,4 4,85 0,86 3,6 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,4482 85,35 9,8 4,84 0,86 3,8 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8,4 4,88 0,92 2,4 -0,12 21,33718 23,8488 89,47 8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,2 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,1481 85,72 10 4,84 0,86 3,8 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,9479 86,56 10,4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8,6 4,87 0,90 2,6 -0,13 20,8387 23,7487 87,75 8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,3483 84,98 9,8 4,84 0,86 3,8 -0,16 19,84174 23,1481 85,72 10,4 4,83 0,86 4 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,6 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
8,8 4,86 0,88 2,8 -0,14 20,34022 23,6486 86,01 9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,4 4,85 0,86 3,6 -0,15 19,84174 23,3483 84,98 9,8 4,84 0,86 3,6 -0,16 19,84174 23,2482 85,35 9,8 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 23,0480 86,09 10,4 4,83 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,34326 22,7477 85,03 10,4 4,83 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
9 4,85 0,86 3 -0,15 19,84174 23,5485 84,26 9,2 4,85 0,87 3,2 -0,15 20,09098 23,4484 85,68 9,4 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,2482 85,35 9,8 4,84 0,86 3,8 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,2 -0,16 19,84174 22,9479 86,84 10,6 4,83 0,84 4,6 -0,17 19,84174 22,9479 86,84 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,591474 22,5475 88,00 1								
9,2 4,85 0,87 3,2 -0,15 20,09098 23,4484 85,68 9,4 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,2482 85,35 9,8 4,84 0,86 3,8 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,9479 86,46 10,4 4,83 0,86 4,6 -0,17 19,84174 22,9479 86,46 10,4 4,83 0,86 5 -0,18 19,54174 22,2477 85,03 10,6 4,83 0,86 5 -0,18 19,84174 22,2477 85,03 1								
9,4 4,85 0,86 3,4 -0,15 19,84174 23,3483 84,98 9,6 4,85 0,86 3,6 -0,15 19,84174 23,2482 85,35 9,8 4,84 0,86 3,8 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,9479 86,46 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,87 5,2 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 19,5925 22,3473 87,67 11								
9,6 4,85 0,86 3,6 -0,15 19,84174 23,2482 85,35 9,8 4,84 0,86 3,8 -0,16 19,84174 23,1481 85,72 10 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,9479 86,46 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 19,5925 22,3473 87,67 11,4 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
9,8 4,84 0,86 3,8 -0,16 19,84174 23,1481 85,72 10 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,8478 86,84 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,86 5 -0,18 19,5925 22,6476 86,51 11,2 4,82 0,87 5,2 -0,18 19,5925 22,3473 87,67 11,4 4,81 0,85 5,4 -0,19 19,5925 22,2472 88,07 11,4 4,81 0,86 5,8 -0,19 19,5925 22,2472 88,07 11,8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10 4,84 0,86 4 -0,16 19,84174 23,0480 86,09 10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,8478 86,84 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5425 22,6476 86,51 11 4,82 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 19,84174 22,5475 88,00 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,4 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,4 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td>							•	
10,2 4,84 0,86 4,2 -0,16 19,84174 22,9479 86,46 10,4 4,83 0,86 4,4 -0,17 19,84174 22,8478 86,84 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 20,90908 22,4474 89,50 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,1471 89,59 12,2						· .		
10,4 4,83 0,86 4,4 -0,17 19,84174 22,8478 86,84 10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,87 5,2 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 20,09098 22,4474 89,50 11,4 4,81 0,85 5,6 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
10,6 4,83 0,84 4,6 -0,17 19,34326 22,7477 85,03 10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,87 5,2 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 20,09098 22,4474 89,50 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,86 6,6 -0,20 19,34174 21,7467 91,24 12								
10,8 4,82 0,85 4,8 -0,18 19,5925 22,6476 86,51 11 4,82 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 20,09098 22,4474 89,50 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,6466 91,66 13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
11 4,82 0,86 5 -0,18 19,84174 22,5475 88,00 11,2 4,82 0,87 5,2 -0,18 20,09098 22,4474 89,50 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,5925 22,2472 88,07 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,9469 88,54 12,6 4,80 0,86 6,6 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,86 6,6 -0,20 19,34326 21,9469 88,54 12,6								
11,2 4,82 0,87 5,2 -0,18 20,09098 22,4474 89,50 11,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,9469 88,14 12,6 4,80 0,86 6,6 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 1								
111,4 4,81 0,85 5,4 -0,19 19,5925 22,3473 87,67 11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,9469 88,14 12,6 4,80 0,86 6,6 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,466 92,52 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
11,6 4,81 0,85 5,6 -0,19 19,5925 22,2472 88,07 11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,4 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,6 -0,22 19,84174 21,3463 92,95 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
11,8 4,81 0,86 5,8 -0,19 19,84174 22,1471 89,59 12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 <						· ·		
12 4,81 0,86 6 -0,19 19,84174 22,0470 90,00 12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,6466 91,66 13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14								
12,2 4,80 0,84 6,2 -0,20 19,34326 21,9469 88,14 12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,6466 91,66 13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4664 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,3463 92,95 13,8 4,77 0,85 7,8 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,86 8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
12,4 4,80 0,84 6,4 -0,20 19,34326 21,8468 88,54 12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,6466 91,66 13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,86 8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54								
12,6 4,80 0,86 6,6 -0,20 19,84174 21,7467 91,24 12,8 4,79 0,86 6,8 -0,21 19,84174 21,6466 91,66 13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,23 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,9459 93,54 14,4 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44								
12,8 4,79 0,86 6,8 -0,21 19,84174 21,6466 91,66 13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,23 19,84174 21,0460 94,28 14,4 4,75 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44								
13 4,79 0,86 7 -0,21 19,84174 21,5465 92,09 13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,23 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,7457 94,44 14,6 4,75 0,85 8,6 -0,25 19,84174 20,6456 96,11 15 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
13,2 4,78 0,86 7,2 -0,22 19,84174 21,4464 92,52 13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
13,4 4,78 0,86 7,4 -0,22 19,84174 21,3463 92,95 13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
13,6 4,78 0,86 7,6 -0,22 19,84174 21,2462 93,39 13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01								
13,8 4,77 0,85 7,8 -0,23 19,5925 21,1461 92,65 14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
14 4,77 0,86 8 -0,23 19,84174 21,0460 94,28 14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
14,2 4,76 0,85 8,2 -0,24 19,5925 20,9459 93,54 14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
14,4 4,75 0,85 8,4 -0,25 19,5925 20,8458 93,99 14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
14,6 4,75 0,85 8,6 -0,25 19,5925 20,7457 94,44 14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								· ·
14,8 4,75 0,86 8,8 -0,25 19,84174 20,6456 96,11 15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26						· ·		· ·
15 4,74 0,85 9 -0,26 19,5925 20,5455 95,36 15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
15,2 4,73 0,85 9,2 -0,27 19,5925 20,4454 95,83 15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
15,4 4,73 0,86 9,4 -0,27 19,84174 20,3453 97,52 15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
15,6 4,72 0,86 9,6 -0,28 19,84174 20,2452 98,01 15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								
15,8 4,72 0,85 9,8 -0,28 19,5925 20,1451 97,26								· ·
								· ·
	16	4,71	0,86	10	-0,29	19,84174	20,0450	98,99

Chorão - Ijuí 11/11/2005 e 12/11/2005 Amostra: Solo - B Local: Data: h ot (%): 36,00 Pressão vertical (kPa): 200,00 Carga normal (kgf): 50,10 Volume (cm3): 50,10 Peso da amostra (g): 94,03 γd (kN/m³): 13,63 0,031 Velocidade do ensaio (mm/min): Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 18,77 $\gamma d_{máx}(kN/m^3)$: 13,80 GC(%): 98,8 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	2	3		
Peso da cápsula (g):	16,66	19,12		
Cáp. + solo úmido (g):	53,46	57,90		
Cáp. + solo seco (g):	43,39	47,28		
Teor de umidade médio (%):	3	7,69		

Leitura no aparelho DADOS TRABALHADOS							
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	4,96	0,65	0,2	-0,04	14,60770	24,9499	58,55
6,4	4,93	0,70	0,4	-0,07	15,85390	24,8498	63,80
6,6	4,90	0,87	0,6	-0,10	20,09098	24,7497	81,18
6,8	4,85	0,93	0,8	-0,15	21,58642	24,6496	87,57
7	4,81	0,99	1	-0,19	23,08186	24,5495	94,02
7,2	4,77	1,04	1,2	-0,23	24,32806	24,4494	99,50
7,4	4,74	1,08	1,4	-0,26	25,32502	24,3493	104,01
7,6	4,71	1,10	1,6	-0,29	25,82350	24,2492	106,49
7,8	4,67	1,11	1,8	-0,33	26,07274	24,1491	107,97
8	4,64	1,15	2	-0,36	27,06970	24,0490	112,56
8,2	4,60	1,16	2,2	-0,40	27,31894	23,9489	114,07
8,4	4,57	1,18	2,4	-0,43	27,81742	23,8488	116,64
8,6	4,54	1,25	2,6	-0,46	29,56210	23,7487	124,48
8,8	4,51	1,31	2,8	-0,49	31,05754	23,6486	131,33
9	4,49	1,33	3	-0,51	31,55602	23,5485	134,00
9,2	4,46	1,35	3,2	-0,54	32,05450	23,4484	136,70
9,4	4,44	1,37	3,4	-0,56	32,55298	23,3483	139,42
9,6	4,43	1,39	3,6	-0,57	33,05146	23,2482	142,17
9,8	4,41	1,39	3,8	-0,59	33,05146	23,1481	142,78
10	4,40	1,37	4	-0,60	32,55298	23,0480	141,24
10,2	4,39	1,37	4,2	-0,61	32,55298	22,9479	141,86
10,2	4,38	1,36	4,4	-0,62	32,30374	22,8478	141,39
10,4	4,37	1,36	4,6	-0,62	32,30374	22,7477	142,01
10,8	4,37	1,35	4,8	-0,63	32,05450	22,6476	141,54
11	4,36	1,34	5	-0,64	31,80526	22,5475	141,06
11,2	4,36	1,34	5,2	-0,64	32,30374	22,4474	143,91
11,4	4,35	1,35	5,2 5,4	-0,65	32,05450	22,3473	143,44
11,4	4,34	1,33	5,4 5,6	-0,66	31,80526	22,3473	142,96
11,8	4,34	1,34	5,8	-0,66	31,80526	22,1471	143,61
12	4,33	1,34	6	-0,67	31,80526	22,0470	144,26
12,2	4,33	1,34	6,2	-0,68	31,80526	21,9469	144,92
12,2	4,32 4,32	1,34		-0,68		21,8468	144,92
12,4	4,32	1,34	6,4 6,6	-0,68	31,80526 31,80526	21,7467	146,25
	4,32 4,31	1,34			31,55602	21,7467	146,23
12,8 13	4,31		6,8 7	-0,69	31,80526		
13,2	4,31	1,34 1,34	7,2	-0,69 -0,69	31,80526	21,5465 21,4464	147,61 148,30
13,4	4,31	1,34	7,2 7,4	-0,69	31,80526	21,4464	146,30
				,	· ·		
13,6	4,30	1,34	7,6	-0,70 -0.70	31,80526	21,2462	149,70 151.50
13,8	4,30	1,35	7,8	-0,70 0.71	32,05450	21,1461	151,59
14	4,29	1,35	8	-0,71 0.71	32,05450	21,0460	152,31
14,2	4,29	1,33	8,2	-0,71	31,55602	20,9459	150,65
14,4	4,29	1,33	8,4	-0,71	31,55602	20,8458	151,38
14,6	4,28	1,32	8,6	-0,72	31,30678	20,7457	150,91
14,8	4,28	1,33	8,8	-0,72	31,55602	20,6456	152,85
15	4,27	1,31	9	-0,73	31,05754	20,5455	151,16
15,2	4,27	1,32	9,2	-0,73	31,30678	20,4454	153,12
15,4	4,27	1,31	9,4	-0,73	31,05754	20,3453	152,65
15,6	4,27	1,31	9,6	-0,73	31,05754	20,2452	153,41
15,8	4,26	1,31	9,8	-0,74	31,05754	20,1451	154,17
16	4,26	1,30	10	-0,74	30,80830	20,0450	153,70

Barreiro - Ijuí 01/11/2005 e 02/11/2005 Local: Amostra: Solo - C Data: h ot (%): 31,50 Carga normal (kgf): 7,515 Pressão vertical (kPa): 30,00 Volume (cm³): Peso da amostra (g): 96,19 50,10 Velocidade do ensaio (mm/min): γd (kN/m³): 14,29 0,031 Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 $\gamma n (kN/m^3): 19,20$ $\gamma d_{máx}(kN/m^3): 14,60$ GC(%): 97,9 Condições do ensaio: Natural (Inundado (X Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	8	56		
Peso da cápsula (g):	16,15	22,98		
Cáp. + solo úmido (g):	53,8	66,18		
Cáp. + solo seco (g):	44,23	55,07		
Teor de umidade médio (%):	34	34,35		_

Leitura no	o aparelho)		DA	DOS TRABA	LHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	5,00	0,42	0,2	0,00	8,87518	24,9499	35,57
6,4	5,00	0,48	0,4	0,00	10,37062	24,8498	41,73
6,6	5,00	0,49	0,6	0,00	10,61986	24,7497	42,91
6,8	5,01	0,48	0,8	0,01	10,37062	24,6496	42,07
7	5,02	0,48	1	0,02	10,37062	24,5495	42,24
7,2	5,03	0,48	1,2	0,03	10,37062	24,4494	42,42
7,4	5,03	0,47	1,4	0,03	10,12138	24,3493	41,57
7,6	5,04	0,46	1,6	0,04	9,87214	24,2492	40,71
7,8	5,05	0,46	1,8	0,05	9,87214	24,1491	40,88
8	5,05	0,46	2	0,05	9,87214	24,0490	41,05
8,2	5,06	0,45	2,2	0,06	9,6229	23,9489	40,18
8,4	5,07	0,45	2,4	0,07	9,6229	23,8488	40,35
8,6	5,07	0,44	2,6	0,07	9,37366	23,7487	39,47
8,8	5,08	0,44	2,8	0,08	9,37366	23,6486	39,64
9	5,08	0,43	3	0,08	9,12442	23,5485	38,75
9,2	5,08	0,43	3,2	0,08	9,12442	23,4484	38,91
9,4	5,09	0,42	3,4	0,09	8,87518	23,3483	38,01
9,6	5,09	0,42	3,6	0,09	8,87518	23,2482	38,18
9,8	5,10	0,42	3,8	0,00	9,12442	23,1481	39,42
10	5,10	0,43	4	0,10	8,87518	23,0480	38,51
10,2	5,10	0,42	4,2	0,10	8,62594	22,9479	37,59
10,2	5,11	0,41	4,4	0,11	8,62594	22,8478	37,75
10,4	5,12	0,41	4,6	0,11	8,62594	22,7477	37,73 37,92
10,8	5,12	0,41	4,8	0,12	8,62594	22,6476	38,09
10,6	5,13	0,41	5	0,12	8,62594	22,5475	38,26
11,2	5,13	0,41	5,2	0,13	8,3767	22,4474	37,32
11,4	5,14	0,40	5,2 5,4	0,13	8,3767	22,3473	37,48
11,4	5,14	0,40	5,4 5,6	0,14	8,3767	22,2472	37,65
11,8	5,14	0,40	5,8	0,14	8,3767	22,1471	37,82
12	5,15	0,40	6	0,15	8,62594	22,0470	39,13
12,2	5,15	0,40	6,2	0,15	8,3767	21,9469	38,17
12,2	5,15	0,40	6,4	0,15	8,3767	21,8468	38,34
12,4	5,16	0,40	6,6	0,13	8,3767	21,7467	38,52
12,8	5,16	0,40	6,8	0,16	8,3767	21,6466	38,70
13	5,16	0,40	7	0,16	8,3767	21,5465	38,88
13,2	5,16	0,40	7,2	0,16	8,3767	21,4464	39,06
13,4	5,16	0,40	7,2 7,4	0,16	8,3767	21,3463	39,00
13,4	5,16	0,40	7,4 7,6	0,16	8,3767	21,3463	39,43
13,8	5,17 5,17	0,40	7,8 7,8	0,17	8,3767	21,2462	39,43 39,61
13,6	5,17	0,40	8	0,17	8,3767	21,1461	39,80
14,2	5,17	0,40	8,2	0,17	8,3767	20,9459	39,80
14,2	5,17 5,17	0,40		0,17			40,18
14,4		0,40	8,4 8,6	0,17	8,3767 8,3767	20,8458 20,7457	40,18
14,8	5,18 5.18						
· ·	5,18 5.18	0,40	8,8	0,18	8,3767	20,6456	40,57
15	5,18	0,40	9	0,18	8,3767	20,5455	40,77
15,2	5,18 5.10	0,40	9,2	0,18	8,3767	20,4454	40,97
15,4	5,19 5.10	0,40	9,4	0,19	8,3767	20,3453	41,17
15,6	5,19	0,40	9,6	0,19	8,3767	20,2452	41,38
15,8	5,19	0,40	9,8	0,19	8,3767	20,1451	41,58
16	5,19	0,40	10	0,19	8,3767	20,0450	41,79

Barreiro - Ijuí 31/10/2005 e 01/11/2005 Amostra: Solo - C Local: Data: h ot (%): 31,50 Carga normal (kgf): 15,03 Pressão vertical (kPa): 60,00 Volume (cm³): 50,10 Peso da amostra (g): 96,19 0,031 γd (kN/m³): 14,24 Velocidade do ensaio (mm/min): $\gamma n (kN/m^3): 19,20$ Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 $\gamma d_{máx}(kN/m^3): 14,60$ GC(%): 97,6 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	1	4		
Peso da cápsula (g):	18,85	17,16		
Cáp. + solo úmido (g):	56,77	56,18		
Cáp. + solo seco (g):	46,97	46,12		
Teor de umidade médio (%):	34	l, 7 9		

Leitura no	o aparelho			DA	DOS TRABA	LHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	4,98	0,57	0,2	-0,02	12,61378	24,9499	50,56
6,4	4,97	0,59	0,4	-0,03	13,11226	24,8498	52,77
6,6	4,97	0,59	0,6	-0,03	13,11226	24,7497	52,98
6,8	4,96	0,59	0,8	-0,04	13,11226	24,6496	53,19
7	4,96	0,58	1	-0,04	12,86302	24,5495	52,40
7,2	4,95	0,58	1,2	-0,05	12,86302	24,4494	52,61
7,4	4,94	0,57	1,4	-0,06	12,61378	24,3493	51,80
7,6	4,94	0,57	1,6	-0,06	12,61378	24,2492	52,02
7,8	4,93	0,57	1,8	-0,07	12,61378	24,1491	52,23
8	4,93	0,57	2	-0,07	12,61378	24,0490	52,45
8,2	4,92	0,58	2,2	-0,08	12,86302	23,9489	53,71
8,4	4,92	0,58	2,4	-0,08	12,86302	23,8488	53,94
8,6	4,92	0,57	2,6	-0,08	12,61378	23,7487	53,11
8,8	4,92	0,57	2,8	-0,08	12,61378	23,6486	53,34
9	4,92	0,55	3	-0,08	12,1153	23,5485	51,45
9,2	4,92	0,53	3,2	-0,08	11,61682	23,4484	49,54
9,4	4,92	0,53	3,4	-0,08	11,61682	23,3483	49,75
9,6	4,92	0,53	3,6	-0,08	11,61682	23,2482	49,97
9,8	4,91	0,53	3,8	-0,09	11,61682	23,1481	50,18
10	4,91	0,53	4	-0,09	11,61682	23,0480	50,40
10,2	4,91	0,53	4,2	-0,09	11,61682	22,9479	50,62
10,4	4,91	0,52	4,4	-0,09	11,36758	22,8478	49,75
10,6	4,91	0,52	4,6	-0,09	11,36758	22,7477	49,97
10,8	4,91	0,53	4,8	-0,09	11,61682	22,6476	51,29
11	4,91	0,53	5	-0,09	11,61682	22,5475	51,52
11,2	4,91	0,52	5,2	-0,09	11,36758	22,4474	50,64
11,4	4,91	0,52	5,4	-0,09	11,36758	22,3473	50,87
11,6	4,91	0,52	5,6	-0,09	11,36758	22,2472	51,10
11,8	4,91	0,53	5,8	-0,09	11,61682	22,1471	52,45
12	4,91	0,53	6	-0,09	11,61682	22,0470	52,69
12,2	4,91	0,53	6,2	-0,09	11,61682	21,9469	52,93
12,4	4,90	0,53	6,4	-0,10	11,61682	21,8468	53,17
12,6	4,90	0,52	6,6	-0,10	11,36758	21,7467	52,27
12,8	4,90	0,53	6,8	-0,10	11,61682	21,6466	53,67
13	4,90	0,53	7	-0,10	11,61682	21,5465	53,92
13,2	4,90	0,52	7,2	-0,10	11,36758	21,4464	53,00
13,4	4,90	0,52	7,4	-0,10	11,36758	21,3463	53,25
13,6	4,90	0,52	7,6	-0,10	11,36758	21,2462	53,50
13,8	4,90	0,53	7,8	-0,10	11,61682	21,1461	54,94
14	4,90	0,53	8	-0,10	11,61682	21,0460	55,20
14,2	4,90	0,52	8,2	-0,10	11,36758	20,9459	54,27
14,4	4,90	0,52	8,4	-0,10	11,36758	20,8458	54,53
14,6	4,90	0,52	8,6	-0,10	11,36758	20,7457	54,79
14,8	4,90	0,52	8,8	-0,10	11,36758	20,6456	55,06
15	4,89	0,52	9	-0,11	11,36758	20,5455	55,33
15,2	4,89	0,52	9,2	-0,11	11,36758	20,4454	55,60
15,4	4,89	0,52	9,4	-0,11	11,36758	20,3453	55,87
15,6	4,89	0,52	9,6	-0,11	11,36758	20,2452	56,15
15,8	4,89	0,52	9,8	-0,11	11,36758	20,1451	56,43
16	4,88	0,52	10	-0,12	11,36758	20,0450	56,71

Local: Barreiro - Ijuí Amostra: Solo - C 30/10/2005 e 31/10/2005 Data: h ot (%): 31,50 Carga normal (kgf): 25,05 Pressão vertical (kPa): 100,00 Volume: 50,10 Peso da amostra (g): 96,19 γd (kN/m³): 14,31 0,031 Velocidade do ensaio (mm/min): Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,20 $\gamma d_{máx}(kN/m^3)$: 14,60 GC(%): 98,0 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	10	11		
Peso da cápsula (g):	21,2	23,45		
Cáp. + solo úmido (g):	66,3	67,28		
Cáp. + solo seco (g):	54,81	56,14		
Teor de umidade médio (%):	34	34,13		

Leitura no	o aparelho	ı		D <i>A</i>	NDOS TRABA	LHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	4,00	0,00	Ô	0,00	, ,	25,0500	0,00
6,2	3,96	0,50	0,2	-0,04	10,8691	24,9499	43,56
6,4	3,93	0,57	0,4	-0,07	12,61378	24,8498	50,76
6,6	3,90	0,65	0,6	-0,10	14,6077	24,7497	59,02
6,8	3,87	0,71	0,8	-0,13	16,10314	24,6496	65,33
7	3,85	0,76	1	-0,15	17,34934	24,5495	70,67
7,2	3,83	0,78	1,2	-0,17	17,84782	24,4494	73,00
7,4	3,81	0,80	1,4	-0,19	18,3463	24,3493	75,35
7,6	3,79	0,84	1,6	-0,21	19,34326	24,2492	79,77
7,8	3,77	0,86	1,8	-0,23	19,84174	24,1491	82,16
8	3,76	0,86	2	-0,24	19,84174	24,0490	82,51
8,2	3,75	0,87	2,2	-0,25	20,09098	23,9489	83,89
8,4	3,74	0,87	2,4	-0,26	20,09098	23,8488	84,24
8,6	3,73	0,87	2,6	-0,27	20,09098	23,7487	84,60
8,8	3,73	0,86	2,8	-0,27	19,84174	23,6486	83,90
9	3,72	0,84	3	-0,28	19,34326	23,5485	82,14
9,2	3,71	0,85	3,2	-0,29	19,5925	23,4484	83,56
9,4	3,71	0,85	3,4	-0,29	19,5925	23,3483	83,91
9,6	3,71	0,84	3,6	-0,29	19,34326	23,2482	83,20
9,8	3,71	0,84	3,8	-0,29	19,34326	23,1481	83,56
10	3,70	0,84	4	-0,30	19,34326	23,0480	83,93
10,2	3,70	0,82	4,2	-0,30	18,84478	22,9479	82,12
10,4	3,70	0,81	4,4	-0,30	18,59554	22,8478	81,39
10,6	3,70	0,81	4,6	-0,30	18,59554	22,7477	81,75
10,8	3,69	0,79	4,8	-0,31	18,09706	22,6476	79,91
11	3,69	0,78	5	-0,31	17,84782	22,5475	79,16
11,2	3,68	0,80	5,2	-0,32	18,3463	22,4474	81,73
11,4	3,68	0,81	5,4	-0,32	18,59554	22,3473	83,21
11,6	3,67	0,80	5,6	-0,33	18,3463	22,2472	82,47
11,8	3,67	0,80	5,8	-0,33	18,3463	22,1471	82,84
12	3,67	0,79	6	-0,33	18,09706	22,0470	82,08
12,2	3,67	0,78	6,2	-0,33	17,84782	21,9469	81,32
12,4	3,67	0,78	6,4	-0,33	17,84782	21,8468	81,70
12,6	3,67	0,78	6,6	-0,33	17,84782	21,7467	82,07
12,8	3,67	0,78	6,8	-0,33	17,84782	21,6466	82,45
13	3,67	0,78	7	-0,33	17,84782	21,5465	82,83
13,2	3,67	0,77	7,2	-0,33	17,59858	21,4464	82,06
13,4	3,67	0,77	7,4	-0,33	17,59858	21,3463	82,44
13,6	3,66	0,76	7,6	-0,34	17,34934	21,2462	81,66
13,8	3,66	0,77	7,8	-0,34	17,59858	21,1461	83,22
14	3,66	0,76	8	-0,34	17,34934	21,0460	82,44
14,2	3,66	0,75	8,2	-0,34	17,1001	20,9459	81,64
14,4	3,66	0,75	8,4	-0,34	17,1001	20,8458	82,03
14,6	3,66	0,76	8,6	-0,34	17,34934	20,7457	83,63
14,8	3,66	0,76	8,8	-0,34	17,34934	20,6456	84,03
15	3,66	0,76	9	-0,34	17,34934	20,5455	84,44
15,2	3,66	0,76	9,2	-0,34	17,34934	20,4454	84,86
15,4	3,66	0,75	9,4	-0,34	17,1001	20,3453	84,05
15,6	3,66	0,75	9,6	-0,34	17,1001	20,2452	84,46
15,8	3,66	0,76	9,8	-0,34	17,34934	20,1451	86,12
16	3,66	0,76	10	-0,34	17,34934	20,0450	86,55

Local: Barreiro - Ijuí Amostra: Solo - C Data: 29/10/2005 e 30/10/2005 h ot (%): 31,50 Carga normal (kgf): 50,10 Pressão vertical (kPa): 200,00 Peso da amostra (g): 96,19 Volume: 50,10 Velocidade do ensaio (mm/min): 0,031 γd (kN/m³): 14,36 Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,20 $\gamma d_{máx}(kN/m^3)$: 14,60 GC(%): 98,3 Inundado (X) Residual (Condições do ensaio: Natural (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO	
Nº da cápsula:	5	20		
Peso da cápsula (g):	18,39	19,11		
Cáp. + solo úmido (g):	51,35	51,63		
Cáp. + solo seco (g):	43,02	43,44		
Teor de umidade médio (%):	33,74			

Leitura no	o aparelho			DA	DOS TRABA	LHADOS	
Dh	D۷	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	6,00	0,00	Ô	0,00	, ,	25,0500	0,00
6,2	5,97	0,55	0,2	-0,03	12,1153	24,9499	48,56
6,4	5,92	0,67	0,4	-0,08	15,10618	24,8498	60,79
6,6	5,87	0,76	0,6	-0,13	17,34934	24,7497	70,10
6,8	5,83	0,87	0,8	-0,17	20,09098	24,6496	81,51
7	5,78	0,96	1	-0,22	22,33414	24,5495	90,98
7,2	5,74	1,02	1,2	-0,26	23,82958	24,4494	97,46
7,4	5,70	1,05	1,4	-0,30	24,5773	24,3493	100,94
7,6	5,67	1,09	1,6	-0,33	25,57426	24,2492	105,46
7,8	5,65	1,11	1,8	-0,35	26,07274	24,1491	107,97
8	5,60	1,14	2	-0,40	26,82046	24,0490	111,52
8,2	5,57	1,18	2,2	-0,43	27,81742	23,9489	116,15
8,4	5,53	1,22	2,4	-0,47	28,81438	23,8488	120,82
8,6	5,50	1,26	2,6	-0,50	29,81134	23,7487	125,53
8,8	5,46	1,29	2,8	-0,54	30,55906	23,6486	129,22
9	5,43	1,33	3	-0,57	31,55602	23,5485	134,00
9,2	5,40	1,34	3,2	-0,60	31,80526	23,4484	135,64
9,4	5,38	1,36	3,4	-0,62	32,30374	23,3483	138,36
9,6	5,35	1,39	3,6	-0,65	33,05146	23,2482	142,17
9,8	5,35	1,39	3,8	-0,65	33,05146	23,1481	142,78
10	5,32	1,37	4	-0,68	32,55298	23,0480	141,24
10,2	5,30	1,38	4,2	-0,70	32,80222	22,9479	142,94
10,4	5,29	1,36	4,4	-0,71	32,30374	22,8478	141,39
10,6	5,28	1,35	4,6	-0,72	32,0545	22,7477	140,91
10,8	5,27	1,35	4,8	-0,73	32,0545	22,6476	141,54
11	5,26	1,34	5	-0,74	31,80526	22,5475	141,06
11,2	5,25	1,33	5,2	-0,75	31,55602	22,4474	140,58
11,4	5,24	1,33	5,4	-0,76	31,55602	22,3473	141,21
11,6	5,23	1,34	5,6	-0,77	31,80526	22,2472	142,96
11,8	5,23	1,32	5,8	-0,77	31,30678	22,1471	141,36
12	5,22	1,32	6	-0,78	31,30678	22,0470	142,00
12,2	5,21	1,30	6,2	-0,79	30,8083	21,9469	140,38
12,4	5,21	1,28	6,4	-0,79	30,30982	21,8468	138,74
12,6	5,20	1,25	6,6	-0,80	29,5621	21,7467	135,94
12,8	5,20	1,25	6,8	-0,80	29,5621	21,6466	136,57
13	5,19	1,25	7	-0,81	29,5621	21,5465	137,20
13,2	5,19	1,25	7,2	-0,81	29,5621	21,4464	137,84
13,4	5,19	1,25	7,4	-0,81	29,5621	21,3463	138,49
13,6	5,18	1,24	7,6	-0,82	29,31286	21,2462	137,97
13,8	5,18	1,23	7,8	-0,82	29,06362	21,1461	137,44
14	5,18	1,23	8	-0,82	29,06362	21,0460	138,10
14,2	5,17	1,22	8,2	-0,83	28,81438	20,9459	137,57
14,4	5,17	1,20	8,4	-0,83	28,3159	20,8458	135,83
14,6	5,17	1,20	8,6	-0,83	28,3159	20,7457	136,49
14,8	5,16	1,20	8,8	-0,84	28,3159	20,6456	137,15
15	5,16	1,20	9	-0,84	28,3159	20,5455	137,82
15,2	5,16	1,21	9,2	-0,84	28,56514	20,4454	139,71
15,4	5,16	1,20	9,4	-0,84	28,3159	20,3453	139,18
15,6	5,16	1,18	9,6	-0,84	27,81742	20,2452	137,40
15,8	5,15	1,17	9,8	-0,85	27,56818	20,1451	136,85
16	5,15	1,17	10	-0,85	27,56818	20,0450	137,53

ENSAIO DE CISALHAMENTO DIRETO

LABORATÓRIO DE MECÂNICA DOS SOLOS - UNIJUÍ/RS

Local: Amostra: Solo - D Esquina Renz - Augusto Pestana 25/10/2005 e 26/10/2005 h ot (%): 28,50 Data: Pressão vertical (kPa): 30,00 Carga normal (kgf): 7,52 50,10 Peso da amostra (g): 97,21 Volume (cm³): Velocidade do ensaio (mm/min): 0,031 $\gamma d (kN/m^3): 15,37$ Compr./ Larg./ Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,40 $\gamma d_{máx}(kN/m^3)$: 15,10 GC(%): 101,8 Natural () Inundado (X) Residual (Condições do ensaio:

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO		
Nº da cápsula:	9	12			
Peso da cápsula (g):	14,73	14,70			
Cáp. + solo úmido (g):	38,48	42,59			
Cáp. + solo seco (g):	33,54	36,81			
Teor de umidade médio (%):	2	6,20			

Leitui	ra no apa	relho		D.	ADOS TRAB	ALHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	5,00	0,46	0,2	0,00	9,8721	24,9499	39,57
6,4	5,00	0,51	0,4	0,00	11,1183	24,8498	44,74
6,6	5,00	0,51	0,6	0,00	11,1183	24,7497	44,92
6,8	5,01	0,46	0,8	0,01	9,8721	24,6496	40,05
7	5,01	0,43	1	0,01	9,1244	24,5495	37,17
7,2	5,02	0,42	1,2	0,02	8,8752	24,4494	36,30
7,4	5,03	0,41	1,4	0,03	8,6259	24,3493	35,43
7,6	5,03	0,41	1,6	0,03	8,6259	24,2492	35,57
7,8	5,04	0,41	1,8	0,04	8,6259	24,1491	35,72
8	5,04	0,41	2	0,04	8,6259	24,0490	35,87
8,2	5,04	0,41	2,2	0,04	8,6259	23,9489	36,02
8,4	5,04	0,41	2,4	0,04	8,6259	23,8488	36,17
8,6	5,05	0,41	2,6	0,05	8,6259	23,7487	36,32
8,8	5,05	0,41	2,8	0,05	8,6259	23,6486	36,48
9	5,05	0,41	3	0,05	8,6259	23,5485	36,63
9,2	5,05	0,41	3,2	0,05	8,6259	23,4484	36,79
9,4	5,05	0,41	3,4	0,05	8,6259	23,3483	36,94
9,6	5,05	0,41	3,6	0,05	8,6259	23,2482	37,10
9,8	5,05	0,41	3,8	0,05	8,6259	23,1481	37,26
10	5,05	0,41	4	0,05	8,6259	23,0480	37,43
10,2	5,05	0,40	4,2	0,05	8,3767	22,9479	36,50
10,4	5,05	0,40	4,4	0,05	8,3767	22,8478	36,66
10,6	5,05	0,40	4,6	0,05	8,3767	22,7477	36,82
10,8	5,05	0,40	4,8	0,05	8,3767	22,6476	36,99
11	5,05	0,40	5	0,05	8,3767	22,5475	37,15
11,2	5,05	0,40	5,2	0,05	8,3767	22,4474	37,32
11,4	5,05	0,40	5,4	0,05	8,3767	22,3473	37,48
11,6	5,05	0,39	5,6	0,05	8,1275	22,2472	36,53
11,8	5,05	0,39	5,8	0,05	8,1275	22,1471	36,70
12	5,05	0,39	6	0,05	8,1275	22,0470	36,86
12,2	5,05	0,39	6,2	0,05	8,1275	21,9469	37,03
12,4	5,05	0,39	6,4	0,05	8,1275	21,8468	37,20
12,6	5,05	0,39	6,6	0,05	8,1275	21,7467	37,37
12,8	5,05	0,38	6,8	0,05	7,8782	21,6466	36,39
13	5,05	0,38	7	0,05	7,8782	21,5465	36,56
13,2	5,05	0,39	7,2	0,05	8,1275	21,4464	37,90
13,4	5,06	0,38	7,4	0,06	7,8782	21,3463	36,91
13,6	5,06	0,38	7,6	0,06	7,8782	21,2462	37,08
13,8	5,06	0,39	7,8	0,06	8,1275	21,1461	38,43
14	5,06	0,38	8	0,06	7,8782	21,0460	37,43
14,2	5,06	0,38	8,2	0,06	7,8782	20,9459	37,61
14,4	5,06	0,38	8,4	0,06	7,8782	20,8458	37,79
14,6	5,06	0,37	8,6	0,06	7,6290	20,7457	36,77
14,8	5,06	0,37	8,8	0,06	7,6290	20,6456	36,95
15	5,06	0,37	9	0,06	7,6290	20,5455	37,13
15,2	5,06	0,37	9,2	0,06	7,6290	20,4454	37,31
15,4	5,06	0,37	9,4	0,06	7,6290	20,3453	37,50
15,6	5,06	0,37	9,6	0,06	7,6290	20,2452	37,68
15,8	5,06	0,37	9,8	0,06	7,6290	20,1451	37,87
16	5,06	0,37	10	0,06	7,6290	20,0450	38,06

Esquina Renz - Augusto Pestana Local: Amostra: Solo - D Data: 26/10/2005 e 27/10/2005 h ot (%): 28,50 Pressão vertical (kPa): 60,00 Carga normal (kgf): 15,03 Volume (cm3): 50,10 Peso da amostra (g): 97,21 Velocidade do ensaio (mm/min): 0,031 $\gamma d (kN/m^3)$: 15,39 Compr./ Larg./ Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,40 $\gamma d_{máx}(kN/m^3): 15,10$ GC(%): 101,9 Residual (Condições do ensaio: Natural (Inundado (X)

Determinação da umidade:	ANTES	ANTES ENSAIO		ENSAIO
Nº da cápsula:	17	10		
Peso da cápsula (g):	21,85	21,16		
Cáp. + solo úmido (g):	58,91	56,40		
Cáp. + solo seco (g):	51,24	49,11		
Teor de umidade médio (%):	2	26,09		

Leitu	ıra no apa	arelho	DADOS TRABALHADOS				
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	5,00	0,00	0	0,00		25,0500	0,00
6,2	4,98	0,61	0,2	-0,02	13,6107	24,9499	54,55
6,4	4,98	0,62	0,4	-0,02	13,8600	24,8498	55,77
6,6	4,98	0,59	0,6	-0,02	13,1123	24,7497	52,98
6,8	4,97	0,57	0,8	-0,03	12,6138	24,6496	51,17
7	4,97	0,56	1	-0,03	12,3645	24,5495	50,37
7,2	4,96	0,55	1,2	-0,04	12,1153	24,4494	49,55
7,4	4,96	0,55	1,4	-0,04	12,1153	24,3493	49,76
7,6	4,96	0,55	1,6	-0,04	12,1153	24,2492	49,96
7,8	4,96	0,55	1,8	-0,04	12,1153	24,1491	50,17
8	4,95	0,55	2	-0,05	12,1153	24,0490	50,38
8,2	4,95	0,56	2,2	-0,05	12,3645	23,9489	51,63
8,4	4,95	0,56	2,4	-0,05	12,3645	23,8488	51,85
8,6	4,95	0,55	2,6	-0,05	12,1153	23,7487	51,01
8,8	4,94	0,56	2,8	-0,06	12,3645	23,6486	52,28
9	4,94	0,56	3	-0,06	12,3645	23,5485	52,51
9,2	4,94	0,56	3,2	-0,06	12,3645	23,4484	52,73
9,4	4,94	0,56	3,4	-0,06	12,3645	23,3483	52,96
9,6	4,94	0,55	3,6	-0,06	12,1153	23,2482	52,11
9,8	4,93	0,55	3,8	-0,07	12,1153	23,1481	52,34
10	4,93	0,55	4	-0,07	12,1153	23,0480	52,57
10,2	4,93	0,55	4,2	-0,07	12,1153	22,9479	52,79
10,4	4,93	0,55	4,4	-0,07	12,1153	22,8478	53,03
10,6	4,93	0,55	4,6	-0,07	12,1153	22,7477	53,26
10,8	4,93	0,55	4,8	-0,07	12,1153	22,6476	53,49
11	4,93	0,56	5	-0,07	12,3645	22,5475	54,84
11,2	4,92	0,56	5,2	-0,08	12,3645	22,4474	55,08
11,4	4,92	0,56	5,4	-0,08	12,3645	22,3473	55,33
11,6	4,92	0,55	5,6	-0,08	12,1153	22,2472	54,46
11,8	4,92	0,55	5,8	-0,08	12,1153	22,1471	54,70
12	4,92	0,56	6	-0,08	12,3645	22,0470	56,08
12,2	4,92	0,56	6,2	-0,08	12,3645	21,9469	56,34
12,4	4,92	0,55	6,4	-0,08	12,1153	21,8468	55,46
12,6	4,92	0,55	6,6	-0,08	12,1153	21,7467	55,71
12,8	4,92	0,55	6,8	-0,08	12,1153	21,6466	55,97
13	4,92	0,55	7	-0,08	12,1153	21,5465	56,23
13,2	4,93	0,55	7,2	-0,07	12,1153	21,4464	56,49
13,4	4,93	0,55	7,4	-0,07	12,1153	21,3463	56,76
13,6	4,93	0,55	7,6	-0,07	12,1153	21,2462	57,02
13,8	4,93	0,55	7,8	-0,07	12,1153	21,1461	57,29
14	4,93	0,55	8	-0,07	12,1153	21,0460	57,57
14,2	4,93	0,55	8,2	-0,07	12,1153	20,9459	57,84
14,4	4,93	0,55	8,4	-0,07	12,1153	20,8458	58,12
14,6	4,93	0,56	8,6	-0,07	12,3645	20,7457	59,60
14,8	4,93	0,55	8,8	-0,07	12,1153	20,6456	58,68
15	4,93	0,55	9	-0,07	12,1153	20,5455	58,97
15,2	4,93	0,54	9,2	-0,07	11,8661	20,4454	58,04
15,4	4,92	0,54	9,4	-0,08	11,8661	20,3453	58,32
15,6	4,92	0,54	9,6	-0,08	11,8661	20,2452	58,61
15,8	4,91	0,54	9,8	-0,09	11,8661	20,1451	58,90
16	4,91	0,54	10	-0,09	11,8661	20,0450	59,20

Esquina Renz - Augusto Pestana 27/10/2005 e 28/10/2005 Local: Amostra: Solo - D Data: h ot (%): 28,50 Pressão vertical (kPa): 100 Carga normal (kgf): 25,05 Volume (cm³): 50,10 Peso da amostra (g): 97,21 Velocidade do ensaio (mm/min): 0,031 $\gamma d (kN/m^3): 15,43$ Compr./Larg./Altura da amostra (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,40 $\gamma d_{máx}(kN/m^3)$: 15,10 GC(%): 102,2 Condições do ensaio: Natural (Inundado (X) Residual (

Determinação da umidade:	ANTES	ENSAIO	DEPOIS ENSAIO
Nº da cápsula:	1	19	
Peso da cápsula (g):	18,84	18,31	
Cáp. + solo úmido (g):	45,50	49,22	
Cáp. + solo seco (g):	40,08	42,85	
Teor de umidade médio (%):	25	5,74	

Leitu	ra no apa	arelho		DA	DOS TRABA	LHADOS	
Dh	Dv	D Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	2,00	0,00	0	0,00		25,0500	0,00
6,2	1,98	0,81	0,2	-0,02	18,59554	24,9499	74,53
6,4	1,97	0,87	0,4	-0,03	20,09098	24,8498	80,85
6,6	1,97	0,91	0,6	-0,03	21,08794	24,7497	85,20
6,8	1,97	0,94	0,8	-0,03	21,83566	24,6496	88,58
7	1,96	0,93	1	-0,04	21,58642	24,5495	87,93
7,2	1,96	0,91	1,2	-0,04	21,08794	24,4494	86,25
7,4	1,95	0,90	1,4	-0,05	20,8387	24,3493	85,58
7,6	1,95	0,88	1,6	-0,05	20,34022	24,2492	83,88
7,8	1,95	0,88	1,8	-0,05	20,34022	24,1491	84,23
8	1,95	0,87	2	-0,05	20,09098	24,0490	83,54
8,2	1,94	0,87	2,2	-0,06	20,09098	23,9489	83,89
8,4	1,94	0,87	2,4	-0,06	20,09098	23,8488	84,24
8,6	1,94	0,87	2,6	-0,06	20,09098	23,7487	84,60
8,8	1,94	0,87	2,8	-0,06	20,09098	23,6486	84,96
9	1,93	0,86	3	-0,07	19,84174	23,5485	84,26
9,2	1,93	0,85	3,2	-0,07	19,5925	23,4484	83,56
9,4	1,93	0,85	3,4	-0,07	19,5925	23,3483	83,91
9,6	1,92	0,84	3,6	-0,08	19,34326	23,2482	83,20
9,8	1,92	0,85	3,8	-0,08	19,5925	23,1481	84,64
10	1,92	0,84	4	-0,08	19,34326	23,0480	83,93
10,2	1,92	0,85	4,2	-0,08	19,5925	22,9479	85,38
10,4	1,92	0,84	4,4	-0,08	19,34326	22,8478	84,66
10,6	1,92	0,84	4,6	-0,08	19,34326	22,7477	85,03
10,8	1,91	0,84	4,8	-0,09	19,34326	22,6476	85,41
11	1,91	0,84	5	-0,09	19,34326	22,5475	85,79
11,2	1,91	0,83	5,2	-0,09	19,09402	22,4474	85,06
11,4	1,91	0,82	5,4	-0,09	18,84478	22,3473	84,33
11,6	1,91	0,83	5,6	-0,09	19,09402	22,2472	85,83
11,8	1,91	0,83	5,8	-0,09	19,09402	22,1471	86,21
12	1,91	0,82	6	-0,09	18,84478	22,0470	85,48
12,2	1,90	0,83	6,2	-0,10	19,09402	21,9469	87,00
12,4	1,90	0,82	6,4	-0,10	18,84478	21,8468	86,26
12,6	1,90	0,82	6,6	-0,10	18,84478	21,7467	86,66
12,8	1,90	0,82	6,8	-0,10	18,84478	21,6466	87,06
13	1,90	0,81	7	-0,10	18,59554	21,5465	86,30
13,2	1,90	0,82	7,2	-0,10	18,84478	21,4464	87,87
13,4	1,89	0,81	7,4	-0,11	18,59554	21,3463	87,11
13,6	1,89	0,81	7,6	-0,11	18,59554	21,2462	87,52
13,8	1,89	0,81	7,8	-0,11	18,59554	21,1461	87,94
14	1,89	0,81	8	-0,11	18,59554	21,0460	88,36
14,2	1,88	0,81	8,2	-0,12	18,59554	20,9459	88,78
14,4	1,88	0,81	8,4	-0,12	18,59554	20,8458	89,21
14,6	1,88	0,81	8,6	-0,12	18,59554	20,7457	89,64
14,8	1,88	0,81	8,8	-0,12	18,59554	20,6456	90,07
15	1,88	0,81	9	-0,12	18,59554	20,5455	90,51
15,2	1,87	0,81	9,2	-0,12	18,59554	20,4454	90,95
15,2	1,87	0,81	9,4	-0,13	18,59554	20,3453	91,40
15,4	1,87	0,81	9,6	-0,13	18,3463	20,3453	90,62
15,8	1,87	0,80	9,8	-0,13	18,59554	20,2452	92,31
16	1,87		10	-0,13		20,1451	92,31
10	1,07	0,80	10	-0,13	18,3463	20,0430	91,00

ENSAIO DE CISALHAMENTO DIRETO

LABORATÓRIO DE MECÂNICA DOS SOLOS - UNIJUÍ/RS

Local: Esquina Renz - Augusto Pestana Amostra: Solo - D 28/10/2005 e 29/10/2005 Data: h ot (%): 28,50 Carga normal (kgf): 50,10 Pressão vertical (kPa): 200 Peso da amostra (g): 97,21 Volume (cm³): 50,10 Velocidade do ensaio (mm/min): γd (kN/m³): 14,96 0,031 Compr./Larg./Altura da amostrá (cm): 5,005 x 5,005 x 2,000 γ n (kN/m³): 19,40 $\gamma d_{m\acute{a}x}(kN/m^3)$: 15,10 GC(%): 99,1 Condições do ensaio: Natural (Inundado (X Residual (

Determinação da umidade:	ANTES ENSAIO		DEPOIS ENSAIO	
Nº da cápsula:	39	43		
Peso da cápsula (g):	31,03	30,75		
Cáp. + solo úmido (g):	99,64	95,62		
Cáp. + solo seco (g):	83,94	80,73		
Teor de umidade médio (%):	29,73			

Leitura no	o aparelh	0		DA	ADOS TRABA	LHADOS	
Dh	Dv	Anel	Dh (mm)	Dv (mm)	D Anel (kgf)	Área (cm²)	Tensão (kPa)
6	4,00	0,00	0	0,00		25,0500	0,00
6,2	3,96	0,76	0,2	-0,04	17,34934	24,9499	69,54
6,4	3,92	0,88	0,4	-0,08	20,34022	24,8498	81,85
6,6	3,87	0,97	0,6	-0,13	22,58338	24,7497	91,25
6,8	3,84	1,08	0,8	-0,16	25,32502	24,6496	102,74
7	3,81	1,17	1	-0,19	27,56818	24,5495	112,30
7,2	3,79	1,25	1,2	-0,21	29,5621	24,4494	120,91
7,4	3,78	1,29	1,4	-0,22	30,55906	24,3493	125,50
7,6	3,76	1,33	1,6	-0,24	31,55602	24,2492	130,13
7,8	3,75	1,37	1,8	-0,25	32,55298	24,1491	134,80
8	3,74	1,39	2	-0,26	33,05146	24,0490	137,43
8,2	3,72	1,41	2,2	-0,28	33,54994	23,9489	140,09
8,4	3,71	1,41	2,4	-0,29	33,54994	23,8488	140,68
8,6	3,69	1,45	2,6	-0,31	34,5469	23,7487	145,47
8,8	3,68	1,45	2,8	-0,32	34,5469	23,6486	146,08
9	3,67	1,45	3	-0,33	34,5469	23,5485	146,71
9,2	3,67	1,46	3,2	-0,33	34,79614	23,4484	148,39
9,4	3,66	1,45	3,4	-0,34	34,5469	23,3483	147,96
9,6	3,66	1,44	3,6	-0,34	34,29766	23,2482	147,53
9,8	3,65	1,43	3,8	-0,35	34,04842	23,1481	147,09
10	3,65	1,41	4	-0,35	33,54994	23,0480	145,57
10,2	3,64	1,40	4,2	-0,36	33,3007	22,9479	145,11
10,4	3,63	1,40	4,4	-0,37	33,3007	22,8478	145,75
10,6	3,63	1,39	4,6	-0,37	33,05146	22,7477	145,30
10,8	3,62	1,40	4,8	-0,38	33,3007	22,6476	147,04
11	3,62	1,41	5	-0,38	33,54994	22,5475	148,80
11,2	3,61	1,39	5,2	-0,39	33,05146	22,4474	147,24
11,4	3,61	1,38	5,4	-0,39	32,80222	22,3473	146,78
11,6	3,60	1,38	5,6	-0,40	32,80222	22,2472	147,44
11,8	3,60	1,36	5,8	-0,40	32,30374	22,1471	145,86
12	3,59	1,35	6	-0,41	32,0545	22,0470	145,39
12,2	3,59	1,37	6,2	-0,41	32,55298	21,9469	148,33
12,4	3,59	1,37	6,4	-0,41	32,55298	21,8468	149,01
12,6	3,58	1,37	6,6	-0,42	32,55298	21,7467	149,69
12,8	3,58	1,37	6,8	-0,42	32,55298	21,6466	150,38
13	3,57	1,36	7	-0,43	32,30374	21,5465	149,93
13,2	3,57	1,37	7,2	-0,43	32,55298	21,4464	151,79
13,4	3,56	1,37	7,4	-0,44	32,55298	21,3463	152,50
13,6	3,56	1,37	7,6	-0,44	32,55298	21,2462	153,22
13,8	3,55	1,35	7,8	-0,45	32,0545	21,1461	151,59
14	3,55	1,35	8	-0,45	32,0545	21,0460	152,31
14,2	3,54	1,37	8,2	-0,46	32,55298	20,9459	155,41
14,4	3,54	1,37	8,4	-0,46	32,55298	20,8458	156,16
14,6	3,53	1,36	8,6	-0,47	32,30374	20,7457	155,71
14,8	3,53	1,35	8,8	-0,47	32,0545	20,6456	155,26
15	3,52	1,36	9	-0,48	32,30374	20,5455	157,23
15,2	3,52	1,36	9,2	-0,48	32,30374	20,4454	158,00
15,4	3,51	1,35	9,4	-0,49	32,0545	20,3453	157,55
15,6	3,50	1,34	9,6	-0,50	31,80526	20,2452	157,10
15,8	3,50	1,37	9,8	-0,50	32,55298	20,1451	161,59
16	3,49	1,33	10	-0,51	31,55602	20,0450	157,43